中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 784-800 DOI: 10.7536/PC160104 Previous Articles   Next Articles

• Review and comments •

Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre

Wang Jiandong, Xu Jiaxi*   

  1. State Key Laboratory of Chemical Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21372025, 21172017) and the Basic Research Development Project of China (No. 2013CB328905)
PDF ( 625 ) Cited
Export

EndNote

Ris

BibTeX

The development of paradigms for diastereoselective control in electrophilic attack on trigonal carbon adjacent to a chiral centre, especially for the alkylation and protonation of enolate anions and equivalents, generated from nucleophilic conjugative additions of α,β-unsaturated carbonyl compounds, and nitrates yielded from nucleophilic additions of nitroolefins, is introduced and reviewed. The diastereoselectivity in the kinetic protonation of conformationally restricted cyclic or allenic enol and enolate derivatives can be rationalized by Zimmerman's early transition state model, which is considered to be governed by steric factors exculsively. When acyclic substrates bearing conformational flexibility are employed, Houk's argument which is based on ab initio MO calculation has placed great importance on the approach angle, acute or obtuse which determines the sense of the diastereoselectivity. Subsequently, Fleming's successive refinements incline to avoid destabilizing allylic 1,3-interactions in the reaction of enolate anions with electrophiles. Excepting rationally tuning A-1,3 strain, electronegative heteroatom substituents are considered to occupy an antiperiplanar position to the forming σ bond via the stereoelectronic interaction in Mohrig's general rule for controlling the diastereoselectivity of electrophilic attack on enolate anions.

Contents
1 Introduction
2 Zimmerman model
2.1 Intermolecular kinetic protonation of restricted cyclic enolate derivatives
2.2 Intramolecular kinetic protonation transfer by the proximate groups of cyclic enolate derivatives
2.3 Kinetic protonation of allenic enolate derivatives
2.4 Application of Zimmerman model in open-chain substrates
3 Houk's arguments model
4 Fleming's refinements for Houk model
4.1 Fleming's model governed by steric factors
4.2 Fleming's model governed by heteroatom-containing substituents on the chiral carbon atom
5 Mohrig model and the applications
5.1 Introduction to Mohrig model
5.2 Applications of Mohrig model
5.3 Stereoelectronic effect in the protonation of chelate-controlled cyclic nitronate anions
6 Conclusions and prospects

CLC Number: 

[1] Cram D J, Elhafez F A A. J. Am. Chem. Soc., 1952, 74: 5828.
[2] Cram D J, Kopecky K R. J. Am. Chem. Soc., 1959, 81: 2748.
[3] Mengel A, Reiser O. Chem. Rev., 1999, 99: 1191.
[4] Chérest M, Felkin H, Prudent N. Tetrahedron Lett., 1968, 9: 2199.
[5] Anh N T, Eisenstein O. Tetrahedron Lett., 1976, 17: 155.
[6] Evans D A, Dart M J, Duffy J L, Yang M G. J. Am. Chem. Soc., 1996, 118: 4322.
[7] Evans D A, Allison B D, Yang M G, Masse C E. J. Am. Chem. Soc., 2001, 123: 10840.
[8] Fukui K. Acc. Chem. Res., 1971, 4: 57.
[9] Mohrig J R, Rosenberg R E, Apostol J W, Bastienaansen M, Evans J W, Franklin S J, Frisbie C D, Fu S S, Hamm M L, Hirose C B, Hunstad D A, James T L, King R W, Larson C J, Latham H A, Owen D A, Stein K A, Warnet R. J. Am. Chem. Soc., 1997, 119: 479.
[10] Schuster D I. Angew. Chem. Int. Ed., 2012, 51: 5286.
[11] Tolbert L M, McMahon R J, Poulter C D. J. Org. Chem., 2013, 78: 1707.
[12] Zimmerman H E. J. Org. Chem., 1955, 20: 549.
[13] Zimmerman H E. Acc. Chem. Res., 1987, 20: 263.
[14] Zimmerman H E, Chang W H. J. Am. Chem. Soc., 1959, 81: 3634.
[15] Zimmerman H E. J. Am. Chem. Soc., 1957, 79: 6554.
[16] Zimmerman H E, Nevins T E. J. Am. Chem. Soc., 1957, 79: 6559.
[17] Zimmerman H E, Mariano P S. J. Am. Chem. Soc., 1968, 90: 6091.
[18] Zimmerman H E, Linder L W. J. Org. Chem., 1985, 50: 1637.
[19] Hinman A, Du Bois J. J. Am. Chem. Soc., 2003, 125: 11510.
[20] Ibrahim A A, Smith S M, Henson S, Kerrigan N J. Tetrahedron Lett., 2009, 50: 6919.
[21] Thommen C, Jana C K. Org. Lett., 2013, 15: 1390.
[22] Zimmerman H E, Wang P. J. Org. Chem., 2003, 68: 9226.
[23] Zimmerman H E, Ignatchenko A. J. Am. Chem. Soc., 1998, 120: 12992.
[24] Zimmerman H E, Ignatchenko A. J. Org. Chem., 1999, 64: 6635.
[25] Zimmerman H E, Wang P. J. Org. Chem., 2002, 67: 9216.
[26] Zimmerman H E, Wang P. Org. Lett., 2002, 4: 2593.
[27] Zimmerman H E, Cheng J. Org. Lett., 2005, 7: 2595.
[28] Zimmerman H E, Cheng J. J. Org. Chem., 2006, 71: 873.
[29] Read de Alaniz J, Rovis T. J. Am. Chem. Soc., 2005, 127: 6284.
[30] Miyata O, Shinada T, Ninomiya I, Naito T, Date T, Okamura K, Inagaki S. J. Org. Chem., 1991, 56: 6556.
[31] Smadja W. Chem. Rev., 1983, 83: 263.
[32] Zimmerman H E, Pushechnikov A. Eur. J. Org. Chem., 2006, 3491.
[33] Sonye J P, Koide K. Org. Lett., 2006, 8: 199.
[34] Paddon-Row M N, Rondan N G, Houk K N. J. Am. Chem. Soc., 1982, 104: 7162.
[35] Dorigo A E, Pratt D W, Houk K N. J. Am. Chem. Soc., 1987, 109: 6591.
[36] Houk K N, Paddon-Row M N, Rondan N G, Wu Y D, Brown F K, Spellmeyer D C, Metz J T, Li Y, Loncharich R J. Science, 1986, 231: 1108.
[37] Houk K N, Rondan N G, Wu Y D, Metz J T, Paddon-Row M N. Tetrahedron, 1984, 40: 2257.
[38] Fleming I, Lewis J J. J. Chem. Soc., Perkin Trans. 1, 1992, 3257.
[39] Squillacote M E, Neth J M. J. Am. Chem. Soc., 1987, 109: 198.
[40] Bott G, Field L D, Sternhell S. J. Am. Chem. Soc., 1980, 102: 5618.
[41] Alajarin M, Cabrera J, Sanchez-Andrada P, Orenes R A, Pastor A. Eur. J. Org. Chem., 2013, 474.
[42] Crump R A N C, Fleming I, Hill J H M, Parker D, Reddy N L, Waterson D. J. Chem. Soc., Perkin Trans. 1, 1992, 3277.
[43] McGarvey G J, Williams J M. J. Am. Chem. Soc., 1985, 107: 1435.
[44] Cieplak A S. Chem. Rev., 1999, 99: 1265.
[45] Hoffmann R W. Chem. Rev., 1989, 89: 1841.
[46] Viteva L, Gospodova T, Stefanovsky Y, Simova S. Tetrahedron, 2005, 61: 5855.
[47] Fleming I, Kilburn J D. J. Chem. Soc., Perkin Trans. 1, 1992, 3295.
[48] Fleming I, Barbero A, Walter D. Chem. Rev., 1997, 97: 2063.
[49] Fleming I, Lawrence N J. J. Chem. Soc., Perkin Trans. 1, 1992, 3309.
[50] Buckle M J C, Fleming I, Gil S, Pang K L C. Org. Biomol. Chem., 2004, 2: 749.
[51] Fleming I, Lawrence N. J. Chem. Soc., Perkin Trans. 1, 1998, 2679.
[52] Fleming I, Ghosh S K. J. Chem. Soc., Perkin Trans. 1, 1998, 2733.
[53] Archibald S C, Barden D J, Bazin J F Y, Fleming I, Foster C F, Mandal A K, Parker D, Takaki K, Ware A C, Williams A R B, Zwicky A B. Org. Biomol. Chem., 2004, 2: 1051.
[54] Collum D B. Acc. Chem. Res., 1992, 25: 448.
[55] Mohrig J R, Lee P K, Stein K A, Mitton M J, Rosenberg R E. J. Org. Chem.,1995, 60: 3529.
[56] Fishbein J C, Jencks W P J. J. Am. Chem. Soc., 1988, 110: 5087.
[57] Mohrig J R. Acc. Chem. Res. 2013, 46: 1407.
[58] Chiang Y, Hojatti M, Keeffe J R, Kresge A J, Schepp N P, Wirz J. J. Am. Chem. Soc., 1987, 109: 4000.
[59] Chiang Y, Kresge A J, Walsh P A. J. Am. Chem. Soc., 1986, 108: 6314.
[60] Rosenberg R E, Mohrig J R. J. Am. Chem. Soc., 1997, 119: 487.
[61] Nishimura K, Tomioka K. J. Org. Chem., 2002, 67: 431.
[62] Nishimura K, Ono M, Nagaoka Y, Tomioka K. Angew. Chem. Int. Ed., 2001, 40: 440.
[63] Banfi L, Guanti G. Tetrahedron: Asymmetry, 1999, 10: 439.
[64] Kahn S D, Pau C F, Chamberlin A R, Hehre W J. J. Am. Chem. Soc., 1987, 109: 650.
[65] Ono M, Nishimura K, Tsubouchi H, Nagaoka Y, Tomioka K. J. Org. Chem., 2001, 66: 8199.
[66] Davies H M L, Hodges L M, Gregg T M. J. Org. Chem., 2001, 66: 7898.
[67] Crich D, Rahaman M Y. Tetrahedron, 2010, 66: 6383.
[68] Chen N, Xu J X. Tetrahedron, 2012, 68: 2513.
[69] Wang J D, Chen N, Xu J X. Tetrahedron, 2015, 71: 4007.
[70] Seeman J I. Chem. Rev., 1983, 83: 83.
[71] Cram D J, Kopecky K R. J. Am. Chem. Soc., 1959, 81: 2748.
[72] Leitereg T J, Cram D J. J. Am. Chem. Soc., 1968, 90: 4019.
[73] Reetz M T, Jung A. J. Am. Chem. Soc., 1983, 105: 4833.
[74] Baldwin S W, McIver J M. Tetrahedron Lett., 1991, 32: 1937.
[75] Reetz M T. Acc. Chem. Res., 1993, 26: 462.
[76] Keck G E, Castellino S. J. Am. Chem. Soc., 1986, 108: 3847.
[77] Keck G E, Castellino S, Wiley M R. J. Org. Chem., 1986, 51: 5478.
[78] Wang J D, Li P F, Yang Z H, Chen N, Xu J X. Tetrahedron, 2016, 72: 370.
[79] Karabatsos G J. J. Am. Chem. Soc., 1967, 89: 1367.
[1] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.
[2] He Qiao, Yin Zhongqiong, Chen Huabao, Zhang Zumin, Wang Xianxiang, Yue Guizhou. Catalytic Asymmetric Syntheses of Indenes and Their Derivatives [J]. Progress in Chemistry, 2016, 28(6): 801-813.
[3] Jiang Kun, Chen Yingchun. The Development of Asymmetric Trienamine Catalysis [J]. Progress in Chemistry, 2015, 27(2/3): 137-145.
[4] Zhu Yingguang, Di Changwei, Hu Wenhao. Asymmetric Multicomponent Reactions [J]. Progress in Chemistry, 2010, 22(07): 1380-1396.
[5] Xu Jiaxi**. Microwave Irradiation and Selectivities in Organic Reactions [J]. Progress in Chemistry, 2007, 19(05): 700-712.