中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 1007-1019 DOI: 10.7536/PC181112 Previous Articles   Next Articles

Virus-Templated Synthesis of Metal Nanomaterials and Their Application

Yue Yang, Jueyu Wang, Min Zhao**(), Daizong Cui**()   

  1. Northeast Forestry University, Harbin 150040, China
  • Received: Online: Published:
  • Contact: Min Zhao, Daizong Cui
  • About author:
    ** E-mail:(Min Zhao);
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51678120); Fundamental Research Funds for the Central Universities(2572019AA19)
Richhtml ( 10 ) PDF ( 379 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, metal nanomaterials have been widely used due to their excellent properties, such as interfacial effect, quantum size effect and macroscopic quantum tunneling effect. Biotemplates are often used to synthesize nanomaterials, including DNA, proteins, bacteria, fungi, viruses and so on. The metal nanomaterials, which are synthesized by virus template, compared with other biotemplates, usually have better stability, dispersity and biocompatibility. Moreover, nanomaterials have excellent performances in catalysis, optics, electricity, magnetism, chemistry and superconduction. With nearly 20 years’ development, the technology of nanomaterial synthesis by using virus as template has been gradually matured. Nowadays, research interest is focused on targeted imaging and disease treatment. The object of this review is to discuss the process and the mechanism of nanomaterial biosynthesis by using virus as templates, such as the synthetic sites(inside and outside the virus cavity), synthesis principles, different synthesis methods, influencing factors and nanomaterials characterization. In addition, the applications of these nanomaterials in different fileds, such as nanocatalysis, nano-batteries, biomedical and medical imaging are discussed. Finally, the problems to be solved in the current research and the development trend of the future research on the synthesis of metal nanomaterials by using virus as template are described.

Table 1 Common virus templates for synthesis of metal nanomaterials
Fig. 1 Schematic illustration of the nano-magnetic cobalt particles synthesized in CPMV[47]. Copyright 2014, American Chemical Society.
Fig. 2 Schematic illustration of synthesis of gold nanoparticles coated in CCMV[52]. Copyright 2016, American Chemical Society.
Fig. 3 Schematic illustration of synthesis of Pd nanostructures by virus template E3-M13[55]. Copyright 2017, Wiley.
Fig. 4 Schematic illustration of assembly process of Au nanoparticle ring[63]. Copyright 2012, American Chemical Society.
Fig. 5 Schematic illustration of the synthesis of TMV-templated Pd nanocatalyst and catalytic dichromate reduction reaction[81]. Copyright 2014, Elsevier.
Fig. 6 Schematic illustration of manganese oxide nanowire electrode structure[85]. Copyright 2013, Springer Nature.
Fig. 7 Schematic illustration of ATRP polymerization for P22 internal modification[44]. Copyright 2012, Springer Nature.
Fig. 8 MR images of plant leaves and TEM images of iron oxide structure in BMV[99]. Copyright 2011, American Chemical Society.
Fig. 9 Schematic illustration of fluorescence imaging of QDs coated with SV40 in vivo and in vitro[103,104]. Copyright 2009,Wiley & Copyright 2015,American Chemical Society.
[1]
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z, Cui Y . Nat. Commun., 2013,4(3):1943.
[2]
张一(Zhang Y), 田甜(Tian T), 孙艳红(Sun Y H), 诸颖(Zhu Y), 黄庆(Huang Q) . 科学通报 (Chinese Science Bulletin), 2014,59(02):158.
[3]
Li Y, Liu Z, Li Y, Wu Y, Chen J, Liu Y, Na P . Nano, 2018,13(05):1850051.
[4]
Han F, Jiao X, Chen D, Li C . Chemistry-An Asian Journal, 2017,12(17):2284.
[5]
Gan H, Yi F, Zhang H, Qian Y, Jin H, Zhang K . Chinese Journal of Chemical Engineering, 2018,26(12):2628.
[6]
Yang M, Shuai Y, Sunderland K S, Mao C . Adv. Funct. Mater., 2017,27(44):1703726.
[7]
Feng Q, Cai H, Lin H, Qin S, Liu Z, Ma D, Ye Y . Nanotechnology, 2018,29(7):075702
[8]
Zheng J, Song F, Che S, Li W, Ying Y, Yu J, Qiao L . Advanced Powder Technology, 2018,29(6):1474.
[9]
Ezekiel I, Kasim S R, Ismail Y M B, Noor A F M . Ceramics International, 2018,44(11):13082.
[10]
Wang Z, He B, Xu G, Wang G, Wang J, Feng Y, Su D, Chen B, Li H, Wu Z, Zhang H, Shao L, Chen H . Nat. Commun., 2018,9(1):1.
[11]
Nel A E, Madler L, Velegol D, Xia T, Hoek E M, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nat. Mater., 2009,8(7):543.
[12]
Duan X, Li Y . Small, 2013,9(9/10):1521.
[13]
Penner R M, Martin C R . Journal of the Electrochemical Society, 1986,133(10):2206.
[14]
阮秀(Ruan X), 董磊(Dong L), 于晶(Yu J), 于良民(Yu L M), 杨玉臻(Yang Y Z) . 材料导报 (Materials Review), 2012,26(01):56.
[15]
Jeong Y J, Koo W T, Jang J S, Kim D H, Cho H J, Kim I D . Nanoscale, 2018,10(28):13713.
[16]
Lee C Y, Park K S, Jung Y K, Park H G . Biosens. Bioelectron., 2017,93:293.
[17]
Mousavi M F, Mirsian S, Noori A, Ilkhani H, Sarparast M, Moradi N, Bathaie S Z, Mehrgardi M A . Electroanalysis, 2017,29(3):861.
[18]
Dhanalakshmi A, Palanimurugan A, Natarajan B . Carbohydr. Polym., 2017,168:191.
[19]
Fu X, Wang Y, Huang L, Sha Y, Gui L, Lai L, Tang Y . Advanced Materials, 2003,15(11):902.
[20]
Li F, Wang Q . Small, 2014,10(2):230.
[21]
Sierra-Sastre Y, Dayeh S A, Picraux S T, Batt C A . ACS Nano, 2010,4(2):1209.
[22]
Bigall N C, Reitzig M, Naumann W, Simon P, van Pée K H, Eychmüller A . Angewandte Chemie International Edition, 2008,47(41):7876.
[23]
Douglas T, Young M . Nature, 1998,393:152.
[24]
Saunders K, Lomonossoff G P . Front. Plant Sci., 2017,8:1335.
[25]
Manchester M, Singh P . Adv. Drug. Deliv. Rev., 2006,58(14):1505.
[26]
Sinn S, Yang L, Biedermann F, Wang D, Kubel C, Cornelissen J, De Cola L . J.Am. Chem. Soc., 2018,140(6):2355. https://www.ncbi.nlm.nih.gov/pubmed/29357236

doi: 10.1021/jacs.7b12447 pmid: 29357236
[27]
Wnek M, Gorzny M L, Ward M B, Walti C, Davies A G, Brydson R, Evans S D, Stockley P G . Nanotechnology, 2013,24(2):025605.
[28]
Shah S N, Khan A A, Espinosa A, Garcia M A, Nuansing W, Ungureanu M, Heddle J G, Chuvilin A L, Wege C, Bittner A M . Langmuir, 2016,32(23):5899.
[29]
Sun Y, Zhang F, Xu L, Yin Z, Song X . Journal of Materials Chemistry A, 2014,2(43):18583.
[30]
Voet A R, Tame J R . Curr. Opin. Biotechnol., 2017,46:14.
[31]
McCoy K, Uchida M, Lee B, Douglas T . ACS Nano, 2018,12(4):3541.
[32]
Royston E, Ghosh A, Kofinas P, Harris M T, Culver J N . Langmuir, 2008,24(3):906.
[33]
Jones O G, Mezzenga R . Soft Matter, 2012,8(4):876.
[34]
Fontana J, Dressick W J, Phelps J, Johnson J E, Rendell R W, Sampson T, Ratna B R, Soto C M . Small, 2014,10(15):3058.
[35]
Schoonen L, Maassen S, Nolte R J M, van Hest J C M . Biomacromolecules, 2017,18(11):3492.
[36]
Huang X, Bronstein L M, Retrum J, Dufort C, Tsvetkova I, Aniagyei S, Stein B, Stucky G, McKenna B, Remmes N, Baxter D, Kao C C, Dragnea B . Nano Letters, 2007,7(8):2407.
[37]
Loo L, Guenther R H, Lommel S A, Franzen S . Journal of the American Chemical Society, 2007,129(36):11111.
[38]
Royston E S, Brown A D, Harris M T, Culver J N . J.Colloid. Interface. Sci., 2009,332(2):402. https://www.ncbi.nlm.nih.gov/pubmed/19159894

doi: 10.1016/j.jcis.2008.12.064 pmid: 19159894
[39]
Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I . Nano Lett., 2010,10(3):773.
[40]
Goicochea N L, De M, Rotello V M, Mukhopadhyay S, Dragnea B . Nano Lett., 2007,7(8):2281.
[41]
Zhang W, Zhang X E, Li F . Biotechnol. J., 2018,13(6):1700619.
[42]
Zhang Z, Buitenhuis J . Small, 2007,3(3):424.
[43]
Nam Y S, Shin T, Park H, Magyar A P, Choi K, Fantner G, Nelson K A, Belcher A M . Journal of the American Chemical Society, 2010,132(5):1462.
[44]
Lucon J, Qazi S, Uchida M, Bedwell G J, LaFrance B, Prevelige P E, Douglas T . Nat. Chem., 2012,4(10):781.
[45]
Aljabali A A, Sainsbury F, Lomonossoff G P, Evans D J . Small, 2010,6(7):818.
[46]
Dujardin E, Peet C, Stubbs G, Culver J N, Mann S . Nano Lett., 2003,3(3):413.
[47]
Jaafar M, Aljabali A A, Berlanga I, Mas-Balleste R, Saxena P, Warren S, Lomonossoff G P, Evans D J, de Pablo P J . ACS Appl. Mater. Interfaces, 2014,6(23):20936.
[48]
Kobayashi M, Onodera K, Watanabe Y, Yamashita I . Chemistry Letters, 2010,39(6):616.
[49]
Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I . Chemistry of Materials, 2007,19(10):2389.
[50]
Balci S, Bittner A M, Hahn K, Scheu C, Knez M, Kadri A, Wege C, Jeske H, Kern K . Electrochimica Acta, 2006,51(28):6251.
[51]
Dragnea B, Chen C, Kwak E S, Stein B, Kao C C . Journal of the American Chemical Society, 2003,125(21):6374.
[52]
Liu A, Verwegen M, de Ruiter M V, Maassen S J, Traulsen C H, Cornelissen J J . J. Phys. Chem. B, 2016,120(26):6352.
[53]
Loo L, Guenther R H, Basnayake V R, Lommel S A, Franzen S . Journal of the American Chemical Society, 2006,128(14):4502.
[54]
Hou L I, Tong D, Jiang Y, Gao F . Nano, 2014,09(06):1450058.
[55]
Kim I, Kang K, Mi H O, Yang M Y, Park I, Nam Y S . Advanced Functional Materials, 2017,27(48):1703262.
[56]
Everts M, Saini V, Leddon J L, Kok R J, Stoff-Khalili M, Preuss M A, Millican C L, Perkins G, Brown J M, Bagaria H, Nikles D E, Johnson D T, Zharov V P, Curiel D T . Nano Lett., 2006,6(4):587.
[57]
Saini V, Martyshkin D V, Mirov S B, Perez A, Perkins G, Ellisman M H, Towner V D, Wu H, Pereboeva L, Borovjagin A, Curiel D T, Everts M . Small, 2008,4(2):262.
[58]
Balci S, Bittner A M, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K . Electrochimica Acta, 2009,54(22):5149.
[59]
Zhou J C, Soto C M, Chen M S, Bruckman M A, Moore M H, Barry E, Ratna B R, Pehrsson P E, Spies B R, Confer T S . J.Nanobiotechnol., 2012,10(1):18.
[60]
Shenton W, Douglas T, Young M, Stubbs G, Mann S . Advanced Materials, 1999,11(3):253.
[61]
Bromley K M, Patil A J, Perriman A W, Stubbs G, Mann S . Journal of Materials Chemistry, 2008,18(40):4796.
[62]
Balci S, Noda K, Bittner A M, Kadri A, Wege C, Jeske H, Kern K . Angew. Chem. Int. Ed. Engl., 2007,46(17):3149.
[63]
Zahr O K, Blum A S . Nano Lett., 2012,12(2):629.
[64]
Zhou Z, Bedwell G J, Li R, Bao N, Prevelige P E, Gupta A . Chem. Commun.(Camb.), 2015,51(6):1062.
[65]
Zhou Z, Bedwell G J, Li R, Prevelige P E, Gupta A . Scientific Reports, 2014,4:3832.
[66]
Liu A, Yang L, Verwegen M, Reardon D, Cornelissen J J L M . RSC Advances, 2017,7(89):56328.
[67]
Wang H, Planchart A, Stubbs G . Biophysical Journal, 1998,74(1):633.
[68]
Kusters R, Lin H K, Zandi R, Tsvetkova I, Dragnea B, van der Schoot P . J. Phys. Chem. B, 2015,119(5):1869.
[69]
Zhang S, Nakano K, Zhang S L, Yu H M . Journal of Nanoparticle Research, 2015,17(10):1.
[70]
Adigun O O, Novikova G, Retzlaff-Roberts E L, Kim B, Miller J T, Loesch-Fries L S, Harris M T . J. Colloid. Interface Sci., 2016,483:165. https://www.ncbi.nlm.nih.gov/pubmed/27552425

doi: 10.1016/j.jcis.2016.07.028 pmid: 27552425
[71]
Mao C, Solis D J, Reiss B D, Kottmann S T, Sweeney R Y, Hayhurst A, Georgiou G, Iverson B, Belcher A M . Science, 2004,303(5655):213.
[72]
Bedwell G J, Zhou Z, Uchida M, Douglas T, Gupta A, Prevelige P E . Biomacromolecules, 2015,16(1):214.
[73]
Chatterji A, Ochoa W F, Ueno T, Lin T, Johnson J E . Nano Lett., 2005,5(4):597.
[74]
Radloff C, Vaia R A, Brunton J, Bouwer G T, Ward V K . Nano Lett., 2005,5(6):1187.
[75]
Tresilwised N, Pithayanukul P, Holm P S, Schillinger U, Plank C, Mykhaylyk O . Biomaterials, 2012,33(1):256.
[76]
Daniel M C, Tsvetkova I B, Quinkert Z T, Murali A, De M, Rotello V M, Kao C C, Dragnea B . ACS Nano, 2010,4(7):3853.
[77]
Sun J, DuFort C, Daniel M C, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello V M, Holzenburg A, Kao C C, Dragnea B . Proceedings of the National Academy of Sciences, 2007,104(4):1354.
[78]
徐兴良(Xu X L), 李莉萍(Li L P), 张丹(Zhang D), 王彦(Wang Y), 李广社(Li G S) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2017,33(11):1970.
[79]
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X Y . Nat. Nanotechnol., 2007,2(9):577.
[80]
Yang C, Manocchi A K, Lee B, Yi H . Applied Catalysis B: Environmental, 2010,93(3/4):282.
[81]
Yang C, Meldon J H, Lee B, Yi H . Catalysis Today, 2014,233:108.
[82]
Yang C, Yi H . ChemCatChem, 2015,7(14):2015.
[83]
Manivannan S, Kang I, Seo Y, Jin H E, Lee S W, Kim K . ACS Appl. Mater. Interfaces, 2017,9(38):32965.
[84]
Lee Y, Kim J, Yun D S, Nam Y S, Shao-Horn Y, Belcher A M . Energy Environ. Sci., 2012,5(8):8328.
[85]
Oh D, Qi J, Lu Y C, Zhang Y, Shao-Horn Y, Belcher A M . Nature Communications, 2013,4:2756.
[86]
Oh D, Qi J, Han B, Zhang G, Carney T J, Ohmura J, Zhang Y, Shao-Horn Y, Belcher A M . Nano Lett., 2014,14(8):4837.
[87]
Moradi M, Li Z, Qi J, Xing W, Xiang K, Chiang Y M, Belcher A M . Nano Lett., 2015,15(5):2917.
[88]
Chu S, Gerasopoulos K, Ghodssi R . Electrochimica Acta, 2016,220:184.
[89]
Lebedev N, Griva I, Dressick W J, Phelps J, Johnson J E, Meshcheriakova Y, Lomonossoff G P, Soto C M . Biosensors and Bioelectronics, 2016,77:306.
[90]
Lee H E, Lee H K, Chang H, Ahn H Y, Erdene N, Lee H Y, Lee Y S, Jeong D H, Chung J, Nam K T . Small, 2014,10(15):3007.
[91]
Yan Y, Zhang M, Moon C H, Su H C, Myung N V, Haberer E D . Nanotechnology, 2016,27(32):325502.
[92]
Michael A B, Xin Y, Nicole F S . Nanotechnology, 2013,24(46):462001.
[93]
Usselman R J, Qazi S, Aggarwal P, Eaton S S, Eaton G R, Russek S, Douglas T . Appl. Magn. Reson., 2015,46(3):349.
[94]
Allen M, Bulte J W, Liepold L, Basu G, Zywicke H A, Frank J A, Young M, Douglas T . Magn. Reson. Med., 2005,54(4):807.
[95]
Kosuge H, Uchida M, Lucon J, Qazi S, Douglas T, McConnell M V . Journal of Cardiovascular Magnetic Resonance, 2013,15(1):O66.
[96]
Qazi S, Liepold L O, Abedin M J, Johnson B, Prevelige P, Frank J A, Douglas T . Mol. Pharm., 2013,10(1):11.
[97]
Hooker J M, Datta A, Botta M, Raymond K N, Francis M B . Nano Lett., 2007,7(8):2207.
[98]
Millán J G, Brasch M, Anaya-Plaza E, de la Escosura A, Velders A H, Reinhoudt D N, Torres T, Koay M S T, Cornelissen J J L M . Journal of Inorganic Biochemistry, 2014,136:140.
[99]
Huang X, Stein B D, Cheng H, Malyutin A, Tsvetkova I B, Baxter D V, Remmes N B, Verchot J, Kao C, Bronstein L M, Dragnea B . ACS Nano, 2011,5(5):4037.
[100]
Martinez-Morales A A, Portney N G, Zhang Y, Destito G, Budak G, Ozbay E, Manchester M, Ozkan C S, Ozkan M . Advanced Materials, 2008,20(24):4816.
[101]
Ghosh D, Lee Y, Thomas S, Kohli A G, Yun D S, Belcher A M, Kelly K A . Nat. Nanotechnol., 2012,7(10):677.
[102]
Lewis J D, Destito G, Zijlstra A, Gonzalez M J, Quigley J P, Manchester M, Stuhlmann H . Nat. Med., 2006,12(3):354.
[103]
Li F, Zhang Z P, Peng J, Cui Z Q, Pang D W, Li K, Wei H P, Zhou Y F, Wen J K, Zhang X E . Small, 2009,5(6):718.
[104]
Li C, Li F, Zhang Y, Zhang W, Zhang X E, Wang Q . ACS Nano, 2015,9(12):12255.
[105]
Zhang Y, Ke X, Zheng Z, Zhang C, Zhang Z, Zhang F, Hu Q, He Z, Wang H . ACS Nano, 2013,7(5):3896.
[106]
Li Q, Li W, Yin W, Guo J, Zhang Z P, Zeng D, Zhang X, Wu Y, Zhang X E, Cui Z . ACS Nano, 2017,11(4):3890.
[107]
Barnhill H N, Claudel-Gillet S, Ziessel R, Charbonnière L J, Wang Q . Journal of the American Chemical Society, 2007,129(25):7799.
[108]
Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z . ACS Nano, 2015,9(5):5223.
[109]
Bennett K M, Jo J I, Cabral H, Bakalova R, Aoki I . Adv. Drug Deliv. Rev., 2014,74:75.
[110]
Wang F, Cao B, Mao C . Chem. Mater., 2010,22(12):3630.
[111]
Ma Y, Nolte R J, Cornelissen J J . Adv. Drug Deliv. Rev., 2012,64(9):811.
[112]
Kushnir N, Streatfield S J, Yusibov V . Vaccine, 2012,31(1):58.
[1] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[2] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[3] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[4] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[5] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[6] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[7] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[8] Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng. Preparation and Application of Fe3O4 Nanomaterials [J]. Progress in Chemistry, 2017, 29(11): 1366-1394.
[9] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[10] Liu Tianhui, Chang Gang, Cao Ruijun, Meng Lingjie. Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging [J]. Progress in Chemistry, 2015, 27(5): 601-613.
[11] Cui Shuyuan, Liu Jun, Wu Wei. Preparation of Metal Nanoparticles-Based Conductive Inks and Their Applications in Printed Electronics [J]. Progress in Chemistry, 2015, 27(10): 1509-1522.
[12] Wu Weibing, Zhang Lei. Functionalization and Applications of Nanocrystalline Cellulose [J]. Progress in Chemistry, 2014, 26(0203): 403-414.
[13] Zhou Guifeng, Wang Qin, Zeng Renquan, Fu Xiangkai, Yang Xinbin. Preparation and Application of Zirconium Phosphate and Its Derivatives [J]. Progress in Chemistry, 2014, 26(01): 87-99.
[14] Shen Aijun, Dong Haiqing, Wen Huiyun, Xu Meng, Li Yongyong, Wang Peijun. Gadolinium-Based Contrast Agents for Tumor Targeting Imaging [J]. Progress in Chemistry, 2011, 23(4): 772-780.
[15] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.