中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 564-576 DOI: 10.7536/PC151123 Previous Articles   Next Articles

• Review and comments •

Catalytic Hydrodehalogenation of Halogenated Organic Compounds with Metal Complexes

Deng Yunpan1, Yang Bo1*, Yu Gang2, Zhuo Qiongfang3, Deng Shubo2, Zhang Hong1   

  1. 1. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China;
    2. POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, China;
    3. South China Institute of Environmental Sciences. MEP, Guangzhou 510655, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21547011, 21177089, 11275130, 21307036)and the National High-Tech Research and Development Program of China(863)(No. 2013AA06A305).
PDF ( 927 ) Cited
Export

EndNote

Ris

BibTeX

Halogenated organic compounds (HOCs) are attributed as one of the major environmental contaminants. Hydrodehalogenation (HDH) has become an effective approach to degrade HOCs. Therefore, exploring various methods of catalytic HDH has persistently attracted many research concerns in this field. Among these methods, due to its special electronic effect and steric effect, metal complexes (MCs) have also presented the efficient catalytic dehalogenation performance. So the catalytic dehalogenation by MCs is reported as the novel HDH method in many recent studies. In this review, the reaction types and mechanisms are summarized for the catalytic dehalogenation processes of fluorinated, chlorinated, and brominated organic compounds using various MCs. It is indicated that the electron transfer conditions, spatial structure, and the affinity of ligand to halogen in HOCs play the major roles to dehalogenation reaction. Additionally, the influential factors including central metal ions, ligands, types of HOCs, reductants, etc. are discussed and analyzed for their effects on catalytic dehalogenation reaction. Finally, it is proposed about existing problems of the catalytic dehalogenation using MCs. Moreover, the future trends for the development of this method to HOCs degradation are prospected.

Contents
1 Introduction
2 Types and mechanisms of catalytic dehalogenation by MCs
2.1 Dechlorination and debromination
2.2 Defluorination
3 Influential factors
3.1 Effect of central ion and ligand in MCs
3.2 Effect of HOCs categories, substituted position of halogen atoms and functional groups
3.3 Effect of reductant
3.4 Effect of solvent
3.5 Effect of pH
3.6 Effect of catalyst support
4 Conclusion and outlook

CLC Number: 

[1] Shestakova M, Sillanpaa M. Chemosphere, 2013, 93(7): 1258.
[2] Petriello M C, Newsome B J, Dziubla T D, Hilt J Z, Bhattacharyya D, Hennig B. Sci. Total Environ., 2014,491/492: 11.
[3] Meng P P, Deng S B, Lu X Y, Du Z W, Wang B, Huang J, Wang Y J, Yu G, Xing B S. Environ. Sci. Technol., 2014, 48 (23): 13785.
[4] Kolomytseva M, Ferraroni M, Chernykh A, Golovleva L, Scozzafava A. Biochim. Biophys. Acta, 2014, 1844 (9): 1541.
[5] Yang B, Jiang C J, Yu G, Zhuo Q F, Deng S B, Wu J H, Zhang H. J. Hazard. Mater., 2015, 299: 417.
[6] Yang B, Deng S B, Yu G, Lu Y H, Zhang H, Xiao J Z, Chen G, Cheng X B, Shi L L. Chem. Eng. J., 2013, 219: 492.
[7] Matsukami H, Kose T, Watanabe M, Takigami H. Sci. TotalEnviron., 2014, 493: 672.
[8] 杨波(Yang B), 李影影(Li Y Y), 余刚(Yu G), 邓述波(Deng S B), 卓琼芳(Zhuo Q F), 张鸿(Zhang H). 化学进展(Progress in Chemistry), 2014, 7 (7):1265.
[9] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189 (1/2): 76.
[10] 张云飞(ZhangY F), 杨波(Yang B), 张鸿(Zhang H), 余刚(Yu G), 邓述波(Deng S B), 刘剑洪(Liu J H). 化学进展(Progress in Chemistry), 2013, 25 (12): 2159.
[11] Zhang W, Li L, Li B, Lin K, Lu S, Fu R, Zhu J, Cui X. J. Environ. Eng., 2013, 139 (6): 803.
[12] Yang B, Yu G, Huang J. Environ. Sci. Technol., 2007, 41 (21): 7503.
[13] Whittlesey M K, Peris E. ACS Catal., 2014, 4 (9): 3152.
[14] Costentin C, Passard G, Robert M, Saveant J M. Chem. Sci., 2013, 4 (2): 819.
[15] Zámostná L, Ahrens M, Braun T. J. Fluorine Chem., 2013, 155: 132.
[16] McGivern W S, Derecskei Kovacs A, North S W, Francisco J S. J. Phys. Chem. A, 2000, 104 (2): 436.
[17] O'Loughlin E J, Burris D R, Delcomyn C A. Environ. Sci. Technol., 1999, 33 (7): 1145.
[18] Dugan T R, Goldberg J M, Brennessel W W, Holland P L. Organometallics, 2012, 31 (4): 1349.
[19] Ahrens M, Scholz G, Braun T, Kemnitz E. Angew. Chem. Int. Ed., 2013, 52 (20): 5328.
[20] Douvris C, Ozerov O V. Science, 2008, 321: 1188.
[21] Yow S, Gates S J, White A J, Crimmin M R. Angew. Chem., 2012, 124 (50): 12727.
[22] Akiyama T, Atobe K, Shibata M, Mori K. J. Fluorine Chem., 2013, 152: 81.
[23] Kuehnel M F, Lentz D, Braun T. Angew. Chem. Int. Ed. 2013, 52 (12): 3328.
[24] Saberov V S, Evans D A, Korotkikh N I, Cowley A H, Pekhtereva T M, Popov A F, Shvaika O P. Dalton Trans., 2014, 43 (48): 18117.
[25] 张晨(Zhang C). 山东大学硕士论文(Master Dissertation of Shandong University), 2008.
[26] Poonam, Kumari P, Ahmad S, Chauhan S M S. Tetrahedron Lett., 2011, 52 (52): 7083.
[27] Sun G, Zhang L, Zhang G, Fan Y, Wang Y, Lu G. J. Chin. Chem. Soc., 2013, 60 (11): 1365.
[28] Gan Y, Yu T, Zhou A, Liu Y, Yu K, Han L. Environ. Sci. Proc. Impacts, 2014, 16 (8): 1882.
[29] Tahara K, Mikuriya K, Masuko T, Kikuchi J, Hisaeda Y. J. Porphyrins Phthalocyanines, 2013, 17 (1/2): 135.
[30] Pratt D A, van der Donk W A. J. Am. Chem. Soc., 2005, 127 (1): 384.
[31] Liptak M D, Brunold T C. J. Am. Chem. Soc., 2006, 128 (28): 9144.
[32] Costentin C, Robert M, Saveant J M, Tard C. Acc. Chem. Res., 2014, 47 (1): 271.
[33] Follett A D, McNabb K A, Peterson A A, Scanlon J D, Cramer C J, McNeill K. Inorg. Chem., 2007, 46 (5): 1645.
[34] Rich A E, DeGreeff A D, McNeill K. Chem. Commun., 2002, 3 (3): 234.
[35] Argüello J E, Costentin C, Griveau S, Savéant J M. J. Am. Chem. Soc., 2005, 127 (14): 5049.
[36] Qian Y Y, Li B Z, Chan K S. Organometallics, 2013, 32 (6): 1567.
[37] Zhang C, Li X, Sun H. Inorg. Chim. Acta, 2011, 365 (1): 133.
[38] Kliegman S, McNeill K. Dalton Trans., 2008, 32 (32): 4191.
[39] Shimakoshi H, Sakumori E, Kaneko K, Hisaeda Y. Chem. Lett., 2009, 38 (5): 468.
[40] Shimakoshi H, Li L, Nishi M, Hisaeda Y. Chem. Commun., 2011, 47 (39): 10921.
[41] Dror I, Schlautman M A. Environ. Toxicol. Chem., 2004, 23 (2): 252.
[42] Zhang Y, Shen W, Ou Z, Zhu W, Fang Y, Kadish K M. Electroanal., 2013, 25 (6): 1513.
[43] Barnett B R, Evans A L, Roberts C C, Fritsch J M. Chemosphere, 2011, 82 (4): 592.
[44] Obare S O, Ito T, Meyer G J. Environ. Sci. Technol., 2005, 39 (16): 6266.
[45] Nelkenbaum E, Dror I, Berkowitz B. Chemosphere, 2009, 75 (1): 48.
[46] Shao J, Thomas A, Han B, Hansen C A. J. Porphyrins Phthalocyanines, 2010, 14 (2): 133.
[47] Izumi S, Shimakoshi H, Abe M, Hisaeda Y. Dalton Trans., 2010, 39 (13): 3302.
[48] Narayanam J M R, Tucker J W, Stephenson C R J. J. Am. Chem. Soc., 2009, 131: 8756.
[49] Tahara K, Hisaeda Y. Green Chem., 2011, 13 (3): 558.
[50] Maji T, Karmakar A, Reiser O. J. Org. Chem., 2011, 76 (2): 736.
[51] Tahara K, Shimakoshi H, Tanaka A, Hisaeda Y. B. Chem. Soc. Jpn., 2010, 83 (12): 1439.
[52] Shimakoshi H, Nakazato A, Tokunaga M, Katagiri K, Ariga K, Kikuchi J, Hisaeda Y. Dalton Trans., 2003, 11 (11): 2308.
[53] Logan M E, Oinen M E. Organometallics, 2006, 25 (4): 1052.
[54] Lázaro G, Polo V, Fernández-Alvarez F J, García-Orduña P, Lahoz F J, Iglesias M, Pérez-Torrente J J, Oro L A. Chem. Sus. Chem., 2015, 8: 495.
[55] Li J, Li X, Wang L, Hu Q, Sun H. Dalton Trans., 2014, 43 (18): 6660.
[56] Dror I, Schlautman M A. Chemosphere, 2004, 57 (10): 1505.
[57] Fritsch J M, McNeill K. Inorg. Chem., 2005, 44 (13): 4852.
[58] Rodriguez-Garrido B, Lu-Chau T A, Feijoo G, Macias F, Monterrroso M C. Environ. Sci. Technol., 2010, 44 (18): 7063.
[59] Cretnik S, Thoreson K A, Bernstein A, Ebert K, Buchner D, Laskov C, Haderlein S, Shouakar-Stash O, Kliegman S, McNeill K, Elsner M. Environ. Sci. Technol., 2013, 47 (13): 6855.
[60] Kliegman S, McNeill K. Environ. Sci. Technol., 2009, 43 (23): 8961.
[61] Amir A, Lee W. J. Hazard. Mater., 2012, 235: 359.
[62] Amir A, Lee W. Chem. Eng. J., 2011, 170 (2/3): 492.
[63] Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2013, 219: 311.
[64] Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2015, 273: 413.
[65] Kraft B M, Lachicotte R J, Jones W D. J. Am. Chem. Soc., 2001, 123 (44): 10973.
[66] Kuhnel M F, Lentz D. Angew. Chem., Int. Ed., 2010, 49 (16): 2933.
[67] Rieth R D, Brennessel W W, Jones W D. Eur. J. Inorg. Chem., 2007 (18): 2839.
[68] Maron L, Werkema E L, Perrin L, Eisenstein O, Andersen R A. J. Am. Chem. Soc., 2005, 127 (1): 279.
[69] Raza A L, Panetier J A, Teltewskoi M, Macgregor S A, Braun T. Organometallics, 2013, 32 (14): 3795.
[70] Aizenberg M, Milstein D. J. Am. Chem. Soc., 1995, 117 (33): 8674.
[71] Arévalo A, Tlahuext-Aca A, Flores-Alamo M, García J J. J. Am. Chem. Soc., 2014, 136 (12): 4634.
[72] Barrios-Francisco R, Benitez-Paez T, Flores-Alamo M, Arevalo A, Garcia J J. Chem. Asian J., 2011, 6 (3): 842.
[73] Slaney M E, Ferguson M J, McDonald R, Cowie M. Organometallics, 2012, 31 (4): 1384.
[74] Gianetti T L, Bergman R G, Arnold J. Chem. Sci., 2014, 5 (6): 2517.
[75] Fischer P, Goetz K, Eichhorn A, Radius U. Organometallics, 2012, 31 (4): 1374.
[76] Prikhod'ko S A, Adonin N Y, Parmon V N. Tetrahedron Lett., 2010, 51 (17): 2265.
[77] Kiplinger J L, G. R T. J. Am. Chem. Soc., 1996, 118 (7): 1805.
[78] Jäger-Fiedler U, Klahn M, Arndt P, Baumann W, Spannenberg A, Burlakov V V, Rosenthal U. J. Mol. Catal. A:Chem., 2007, 261 (2): 184.
[79] Lv H, Zhan J H, Cai Y B, Yu Y, Wang B, Zhang J L. J. Am. Chem. Soc., 2012, 134 (39): 16216.
[80] Lv H, Cai Y B, Zhang J L. Angew. Chem. Int. Ed., 2013, 52 (11): 3203.
[81] Macgregor S A, McKay D, Panetier J A, Whittlesey M K. Dalton Trans., 2013, 42 (20): 7386.
[82] Panetier J A, Macgregor S A, Whittlesey M K. Angew. Chem. Int. Ed., 2011, 50 (12): 2783.
[83] Reade S P, Mahon M F, Whittlesey M K. J. Am. Chem. Soc., 2009, 131 (5): 1847.
[84] Guard L M, Ledger A E W, Reade S P, Ellul C E, Mahon M F, Whittlesey M K. J. Organomet. Chem., 2011, 696 (3): 780.
[85] Schwartsburd L, Mahon M F, Poulten R C, Warren M R, Whittlesey M K. Organometallics, 2014, 33 (21): 6165.
[86] Ekkert O, Strudley S D A, Rozenfeld A, White A J P, Crimmin M R. Organometallics, 2014, 33 (24): 7027.
[87] Teltewskoi M, Panetier J A, Macgregor S A, Braun T. Angew. Chem., Int. Ed., 2010, 49 (23): 3947.
[88] Nova A, Reinhold M, Perutz R N, Macgregor S A, McGrady J E. Organometallics, 2010, 29 (7): 1824.
[89] Braun T, Noveski D, Ahijado M, Wehmeier F. Dalton Trans., 2007, 2007 (34): 3820.
[90] Xiao J, Wu J, Zhao W, Cao S. J. Fluorine. Chem., 2013, 146: 76.
[91] Zhao W, Wu J, Cao S. Adv. Synth. Catal., 2012, 354 (4): 574.
[92] Li J, Zheng T, Sun H, Li X. Dalton Trans., 2013, 42 (36): 13048.
[93] Chen Z, He C Y, Yin Z, Chen L, He Y, Zhang X. Angew. Chem. Int. Ed., 2013, 52 (22): 5813.
[94] Dror I, Schlautman M A. Environ. Toxicol. Chem., 2003, 22 (3): 525.
[95] Clot E, Eisenstein O, Jasim N, Macgregor S A, McGrady J E, Perutz R N. Acc. Chem. Res., 2011, 44 (5): 333.
[96] Caputo C B, Hounjet L J, Dobrovetsky R, Stephan D W. Sci., 2013, 341: 1374.
[97] Breyer D, Braun T, Klaering P. Organometallics, 2012, 31 (4): 1417.
[98] Isse A A, Gennaro A, Lin C Y, Hodgson J L, Coote M L, Guliashvili T. J. Am. Chem. Soc., 2011, 133: 6254.
[99] Sadowsky D, McNeill K, Cramer C J. Environ. Sci. Technol., 2013, 47 (24): 14194.
[100] Li J, Zheng T, Sun H, Xu W, Li X. Dalton Trans., 2013, 42 (16): 5740.
[101] Lv H, Cai Y B, Zhang J L. Angew. Chem. Int. Ed.,2013, 52 (11): 3203.
[102] Kim S, Park T, Lee W. J. Environ. Manage., 2015, 151: 378.
[103] Lesage S, Brown S, Millar K. Environ. Sci. Technol., 1998, 32 (15): 2264.
[104] Glod G, Brodmann U, Angst W, Holliger C, Schwarzenbach R P. Environ. Sci. Technol., 1997, 31 (11): 3154.
[105] Xu J, Shimakoshi H, Hisaeda Y. J. Organometallic Chem., 2015, 782: 89.
[106] Zhang W, Shimakoshi H, Houfuku N, Song X M, Hisaeda Y. Dalton Trans., 2014, 43: 13972.
[107] Sabater S, Mata J A, Peris E. Organometallics, 2015, 34 (7): 1186.
[1] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[2] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[3] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[4] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[5] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[6] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[7] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[8] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[9] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[10] Zheng Yongpeng, Xu Jiaxi. Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry [J]. Progress in Chemistry, 2014, 26(09): 1471-1491.
[11] Zhang Yunfei, Yang Bo, Zhang Hong, Yu Gang, Deng Shubo, Liu Jianhong. Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts [J]. Progress in Chemistry, 2013, 25(12): 2159-2168.
[12] Cheng Long, Lü Xiaofeng, Li Ming, Zhang Lin, Hou Hongwei. Study on Third-Order Nonlinear Optical Properties of Functional Complexes [J]. Progress in Chemistry, 2013, 25(10): 1625-1630.
[13] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[14] Ma Xuelu, Lei Ming. Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes [J]. Progress in Chemistry, 2013, 25(08): 1325-1333.
[15] Wang Zhipeng, Zhang Yan, Wang Xiaoqing*. Models in Metalloenzymes for Dioxygen Activation [J]. Progress in Chemistry, 2013, 25(06): 915-926.