English
新闻公告
More
化学进展 2006, Vol. 18 Issue (0708): 987-994 前一篇   后一篇

• 综述与评论 •

毛细管电泳无胶筛分介质分离DNA的机理*

周丹;王延梅**   

  1. 中国科学技术大学高分子科学与工程系 合肥 230026
  • 收稿日期:2005-08-01 修回日期:2005-12-01 出版日期:2006-08-24 发布日期:2006-08-24
  • 通讯作者: 王延梅

Mechanisms of DNA Separation by Capillary Electrophoresis in Non-Gel Sieving Matrices

Dan Zhou;Yanmei Wang**   

  1. Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China

     

  • Received:2005-08-01 Revised:2005-12-01 Online:2006-08-24 Published:2006-08-24
  • Contact: Yanmei Wang
快速、高效而灵敏的分离技术对于DNA的分析是至关重要的。使用无胶筛分介质的毛细管电泳是最重要的DNA分离技术之一,通常使用无交联的高分子溶液作为无胶筛分介质。本文在介绍高分子溶液理论的基础上,综述了DNA在毛细管电泳无胶筛分介质(缠结溶液和稀溶液)中的分离机理,主要包括Ogston筛分模型、各种修正的爬行模型、瞬态缠结偶合机理及其改进机理等。
Fast, highly efficient, and sensitive separation technique is crucial for DNA analysis. The capillary electrophoresis using non-gel sieving matrices is one of the most important techniques for DNA separation. The uncrosslinked polymer solutions are generally used as sieving matrices. Based on the introduction of the theory of the polymer solutions, the mechanisms of DNA separation by the capillary electrophoresis in non-gel sieving matrices (entangled and dilute solutions) are reviewed in this paper, which includes Ogston sieving model, various modified reptation models, transient entanglement coupling mechanisms and its improved mechanisms.

中图分类号: 

()

[ 1 ] 秦向东(Qin X D) , 裴静(Pei J ) , 沈建红(Shen J H) 等. 现代仪器(Modern Instruments) , 2001 , 6 : 9 —12
[ 2 ] Albarghouthi M N. PhD Thesis of Northwestern University , 2002
[ 3 ] 王前(Wang Q) , 许旭( Xu X) . 化学进展( Progress in Chemistry) , 2003 , 15 : 275 —287
[ 4 ] Sartori A , Barbier V , Viovy J L. Electrophoresis , 2003 , 24 :421 —440
[ 5 ] Chu B , Liang D. J . Chromatogr. A , 2002 , 966 : 1 —13
[ 6 ] Ashton R , Padala C , Kane R S. Current Opinion in Biotechnology , 2003 , 14 : 497 —504
[ 7 ] Cohen A S , Najarian D R , Paulus A , Guttman A , Smith J A ,Karger B L , Proc. Natl . Acad. Sci . USA , 1988 , 85 : 9660 —9663
[ 8 ] Motsch S R , Kleemib M H , Schomburg G. J . High Resol .Chromatogr. , 1991 , 14 : 629 —632
[ 9 ] Zhou H , Miller A W, Sosic Z , Buchholz B , Barron A E , Kotler L , Karger B L. Anal . Chem. , 2000 , 72 : 1045 —1052
[10] Song L G, Liang D H , Fang D F , Chu B. Electrophoresis , 2001 ,22 : 1987 —1996
[11] Chang H T , Yeung E S. J . Chromatogr. B , 1995 , 669 : 113 —123
[12] Gao Q F , Yeung E S. Anal . Chem. , 2000 , 72 : 2499 —2506
[13] Gelfi C , Vigano A , Palma S D , et al . Electrophoresis , 2002 , 23 :1517 —1523
[14] De Gennes P G. Scaling Concepts in Polymer Physics. Ithaca , N Y: Cornell Univ. Press , 1979
[15] Chiari M, Melis A. Trends in Analytical Chemistry , 1998 , 17 :623 —632
[16] Xu F , Baba Y. Electrophoresis , 2004 , 25 : 2332 —2345
[17] Kurata M, Tsunashima Y. Polymer Handbook (eds. Brandrup J ,Immergut E H) . New York : John Wiley , 1989. ⅦP1 —ⅦP46
[18] Viovy J L , Duke T. Electrophoresis , 1993 , 14 : 322 —329
[19] Viovy J L , Heller C. Capillary Electrophoresis : An Analytical Tool in Biotechnology , Analytical Biotechnology Series ( ed.Righetti P G) . Boca Raton : CRC Press , 1996. 477 —508
[20] Grossman P D , Soane D S. Biopolymers , 1991 , 31 : 1221 —1228
[21] Broseta D , Leibler L , Lapp A , Strazielle C. Europhys. Lett . ,1986 , 2 : 733 —737
[22] Ogston A G. Trans. Faraday Soc. , 1958 , 54 : 1754 —1757
[23] Rodbard D , Chrambach A. Proc. Natl . Acad. Sci . USA , 1970 ,4 : 970 —977
[24] Rodbard D , Chrambach A. Anal . Biochem. , 1971 , 40 : 95 —134
[25] Lunney J , Chrambach A , Rodbard D. Anal . Biochem. , 1971 ,40 : 158 —173
[26] Slater G W, Rousseu J , Noolandi J , et al . Biopolymers , 1988 ,27 : 509 —524
[27] Slater G W, Noolandi J . Biopolymers , 1989 , 28 : 1781 —1791
[28] Ferguson K A. Metabolism, 1964 , 13 : 985 —1002
[29] De Gennes P G. J . Chem. Phys. , 1971 , 55 : 572 —579
[30] Slater G W, Steve G, Michel G G, et al . Electrophoresis , 2002 ,23 : 3791 —3816
[31] Slater G W, Noolandi J . Biopolymers , 1986 , 25 : 431 —454
[32] Lumpkin O J , Dejardin P , Zimm B H. Biopolymers , 1985 , 24 :1573 —1593
[33] Slater G W, Noolandi J . Phys. Rev. Lett . , 1985 , 55 : 1579 —1585
[34] Duke T A J , Semenov A N , Viovy J L. Phys. Rev. Lett . , 1992 ,69 : 3260 —3263
[35] Duke T , Viovy J L , Semenov A N. Biopolymers , 1994 , 34 :239 —247
[36] Duke T , Viovy J L. Phys. Rev. E , 1994 , 49 : 2408 —2416
[37] Semenov A N , Duke T A J , Viovy J L. Phys. Rev. E , 1995 ,51 : 1520 —1537
[38] Heller C , Duke T , Viovy J L. Biopolymers , 1994 , 34 : 249 —259
[39] Barkema G T , Marko J F , Widom B. Phys. Rev. , 1994 , 49 :5303 —5309
[40] Viovy J L. Rev. Mod. Phys. , 2000 , 72 : 813 —872
[41] Cottet H , Gareil P , Viovy J L. Electrophoresis , 1998 , 19 :2151 —2162
[42] Bae Y C , Soane D. J . Chromatogr. , 1993 , 652 : 17 —22
[43] Slater G W, Kenward M, McCormick L C , et al . Current Opinion in Biotechnology , 2003 , 14 : 58 —64
[44] Muthukumar M, Baumgrtner A. Macromolecules , 1989 , 22 :1937 —1941
[45] Muthukumar M, Baumgrtner A. Macromolecules , 1989 , 22 :1941 —1946
[46] Hoagland D A , Muthukumar M. Macromolecules , 1992 , 25 :6696 —6698
[47] Zimm B H. J . Chem. Phys. , 1991 , 94 : 2187 —2206
[48] Barron A E , Soane D S , Blanch H W. J . Chromatogr. A , 1993 ,652 : 3 —16
[49] Barron A E , Blanch H W, Soane D S. Electrophoresis , 1994 ,15 : 597 —615
[50] Barron A E , Sunada W M, Blanch H W. Electrophoresis , 1995 ,16 : 64 —74
[51] Barron A E , Sunada W M, Blanch H W. Electrophoresis , 1996 ,17 : 744 —757
[52] Hubert S , Slater G, Viovy J L. Macromolecules , 1996 , 29 :1006 —1009
[53] Shi X L , Hammond R W, Morris M D. Anal . Chem. , 1995 , 67 :1132 —1138
[54] Todorov T I , de Carmejane O , Walter N G, et al .Electrophoresis , 2001 , 22 : 2442 —2447
[55] Sunada W M, Blanch H W. Biotechnol . Progr. , 1998 , 14 :766 —772
[56] Sunada W M, Blanch H W. Electrophoresis , 1998 , 19 : 3128 —3136
[57] Jung H J , Bae Y C. J . Chromatogr. A , 2002 , 967 : 279 —287
[58] Nkodo A E , Tinland B. Electrophoresis , 2002 , 23 :2755 —2765
[59] Huang M F , Kuo Y C , Huang C C , et al . Anal . Chem. , 2004 ,76 : 192 —196
[60] Lin Y W, Huang M F , Chang H T. Electrophoresis , 2005 , 26 :320 —330
[61] Jin Y, Lin B C , Fung Y S. Fresenius’J . Anal . Chem. , 2001 ,370 : 1015 —1022
[62] Nkodo A E , Tinland B. Electrophoresis , 2001 , 22 : 2424 —2432
[63] Nkodo A E. PhD Thesis , L’Universite Louis Pasteur , 2001
[64] Heller C. Electrophoresis , 2001 , 22 : 629 —643
[65] Huang X C , Quesada M A , Mathies R A. Anal . Chem. , 1992 ,64 : 2149 —2154
[66] Ashton R , Padala C , Kane R S. Current Opinion in Biotechnology , 2003 , 14 : 497 —504

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[10] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[11] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[12] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[13] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[14] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.