English
新闻公告
More
化学进展 2007, Vol. 19 Issue (05): 787-795 前一篇   后一篇

• 综述与评论 •

聚苯胺/金属纳米粒子复合物的制备及性能

李新贵;孙晋;黄美荣*   

  1. 同济大学材料学院 先进土木工程材料教育部重点实验室 上海 200092
  • 收稿日期:2006-06-21 修回日期:2006-08-10 出版日期:2007-05-24 发布日期:2007-05-24
  • 通讯作者: 黄美荣

Preparation and Properties of Nanocomposites of Polyaniline and Metal Nanoparticles

Li Xingui;Sun Jin;Huang Meirong*   

  1. Key Laboratory of Advanced Civil Engineering Materials, College of Material Science and Engineering, Tongji University, Shanghai 200092,China
  • Received:2006-06-21 Revised:2006-08-10 Online:2007-05-24 Published:2007-05-24
基于国内外最新研究文献及本课题组研究工作,从发展历史、制备方法、多功能性方面系统综述了近年来发展起来的聚苯胺/金属纳米粒子复合物。在聚苯胺基体中引入金属纳米粒子的方法可归纳为3大类:原位复合法、直接共混法和层层自组装法。所形成的有机聚苯胺和无机金属杂化复合物不仅能保留各自原有的特异性能,而且二组分之间还存在着相互协同作用,能够极大地提升基体聚苯胺材料的性能,电导率最高可提高100倍,电氧化催化电流最高可提高10倍。分散在聚苯胺膜中的极少量铂微粒就能使不锈钢板的腐蚀电位稳定在钝化区域。聚苯胺/金属纳米粒子复合物所表现出的突出的固有电导性、优异的反应催化性和极强的金属防腐性,使其跻身于为数不多的新型高性能复合材料之列,显示出了诱人的应用前景。
Polyaniline/metal nanoparticle composites,a kind of novel materials developed in recent years, have been systematically reviewed from the history, preparation and multi-functionalities based on our recent research and the latest literature. The technique of introducing metal nanoparticle into polyaniline matrix could be summarized in three categories:in-situ compound, direct blending and layer-by-layer self-assembly. The resulted hybrids from organic polyaniline and inorganic metals not only retain the original respective intrinsic performance, but also exhibit coadjutant effect that is beneficial for improving the properties of polyaniline matrix in composites. The maximal conductivity of the composite is ca.100 times higher than that of the matrix, and the maximal peak current of oxidation is ca.10 times higher than that of the matrix. Traces of platinum microparticles dispersed in polyaniline film could result in a stable corrosion potential of stainless steel within the passive range. The unique properties of polyaniline/metal nanoparticle composites including outstanding intrinsically electrical conductivity, excellent reactive catalysis and powerful anticorrosion properties make them lie in few high performance composites. They have shown attractive potential in applications.

中图分类号: 

()

[ 1 ] Li X G, Huang M R , Duan W, et al1 Chem1 Rev. , 2002 , 102 :2925 —3030
[ 2 ] Kinyanjui J M, Hanks J , Hatchett D W, et al . J . Electrochem.Soc. , 2004 , 151 (12) : D113 —D120
[ 3 ] Ivanov S , Tsakova V. Electrochim. Acta , 2005 , 50 : 5616 —5623
[ 4 ] 吴婉群(Wu W Q) , 王月丰(Wang Y F) , 范例(Fan L) 等. 应用化学(Chinese J . Appl . Chem. ) , 1995 , 12(1) : 68 —72
[ 5 ] Ivanov S , Tsakova V. J . Appl . Electrochem. , 2002 , 32 :701 —707
[ 6 ] Ivanov S , Tsakova V. J . Appl . Electrochem. , 2002 , 32 :709 —715
[ 7 ] Tsakova V , Borissov D , Ivanov S. Electrochem. Commun. ,2001 , 3 : 312 —316
[ 8 ] Ivanov S , Tsakova V. Electrochim. Acta , 2004 , 49 : 913 —921
[ 9 ] Tsakova V , Borissov D. Electrochem. Commun. , 2000 , 2 :511 —515
[10] Leone A , Marino W, Scharifker B R. J . Electrochem. Soc. ,1992 , 139 : 438 —442
[11] Ficicioglu F , Kadirgan F. J . Electroanal . Chem. , 1997 , 430 :179 —182
[12] Venancio E C , Napporn W T , Motheo A J . Electrochim. Acta ,2002 , 47(9) : 1495 —1501
[13] Kelaidopoulou A , Abelidou E , Papoutsis A , et al . J . Appl .Electrochem. , 1998 , 28 : 1101 —1106
[14] Kelaidopoulou A , Papoutsis A , Kokkinidis G. J . Appl .Electrochem. , 1999 , 29 : 101 —107
[15] Luna A M C. J . Appl . Electrochem. , 2000 , 30 : 1137 —1142
[16] 周海晖(Zhou H H) , 焦树强(Jiao S Q) , 陈金华(Chen J H)等. 物理化学学报(Acta Phys. Chim. Sin. ) , 2004 , 20 (1) :9 —14
[17] Malinauskas A , Holze R. J . Appl . Polym. Sci . , 1999 , 73 :287 —294
[18] Mourato A , Wong S M, Siegenthaler H , et al . J . Solid StateElectrochem. , 2006 , 10 : 140 —147
[19] Croissant MJ , Napporn T , Leger J M, et al . Electrochim. Acta ,1998 , 43 : 2447 —2457
[20] Coutanceau C , Croissant M J , Napporn T , et al . Electrochim.Acta , 2000 , 46 : 579 —588
[21] Hu C C , Chen E , Lin J Y. Electrochim. Acta , 2002 , 47 :2741 —2749
[22] Malik M A , Galkowski M T , Bala H. Electrochim. Acta , 1999 ,44 : 2157 —2163
[23] Kitani A , Akashi T , Sugimoto K, et al . Synth. Met . , 2001 ,121 : 1301 —1302
[24] Kinyanjui J M, Wijeratne N R , Hanks J , et al . Electrochim.Acta , 2006 , 51 : 2825 —2835
[25] Tang Z C , Geng D S , Lu G X. Thin Solid Films , 2006 , 497 :309 —314
[26] Wang Y, Huang J H , Zhang C G, et al . Electroanalysis , 1998 ,10(11) : 776 —778
[27] Smith J A , Josowicz M, Janata J . J . Electrochem. Soc. , 2003 ,150(8) : E384 —E388
[28] Tseng R J , Huang J X, Ouyang J Y, et al . Nano Lett . , 2005 , 5(6) : 1077 —1080
[29] Wang J G, Neoh K G, Kang E T. J . Colloid Interface Sci . ,2001 , 239 : 78 —86
[30] Kang E T , Ting Y P , Neoh K G. Polymer , 1993 , 34 (23) :4994 —4996
[31] Khan M A , Perruchot C , Armes S P , et al . J . Mater. Chem. ,2001 , 11 : 2363 —2372
[32] O’Mullane A P , Dale S E , Macpherson J V , et al . Chem.Commun. , 2004 , 1606 —1607
[33] 李鹏(Li P) , 官建国(Guan J G) , 张清杰(Zhang Q J ) 等. 武汉理工大学学报(J . Wuhan Univ. Technol . ) , 2005 , 27 (3) :5 —8
[34] Sarma T K, Chattopadhyay A. J . Phys. Chem. A , 2004 , 108 :7837 —7842
[35] Sharma S , Nirkhe C , Pethkar S , et al . Sens. Actuators B , 2002 ,85 : 131 —136
[36] Granot E , Katz E , Basnar B , et al . Chem. Mater. , 2005 , 17 :4600 —4609
[37] Pillalamarri S K, Blum F D , Bertino M F. Chem. Commun. ,2005 , 4584 —4585
[38] Feng X M, Yang G, Xu Q , et al . Macromol . Rapid Commun. ,2006 , 27 : 31 —36
[39] Houdayer A , Schneider R , Billaud D , et al . Appl . Organometal .Chem. , 2005 , 19 : 1239 —1248
[40] Athawale A A , Bhagwat S V , Katre P P. Sens. Actuators B ,2006 , 114 : 263 —267
[41] Oliveira M M, Zanchet D , Ugarte D , et al . Prog. Colloid Polym.Sci . , 2004 , 128 : 126 —130
[42] Mallick K, Witcomb M J , Dinsmore A , et al . Macromol . Rapid Commun. , 2005 , 26 : 232 —235
[43] Kinyanjui J M, Hatchett D W. Chem. Mater. , 2004 , 16 :3390 —3398
[44] Pillalamarri S K, Blum F D , Tokuhiro A T , et al . Chem.Mater. , 2005 , 17(24) : 5941 —5944
[45] Sivakumar M, Gedanken A. Synth. Met . , 2005 , 148 : 301 —306
[46] Du J M, Liu Z M, Han B X, et al . Microporous Mesoporous Mater. , 2005 , 84 : 254 —260
[47] Khanna P K, Singh N , Charan S , et al . Mater. Chem. Phys. ,2005 , 92 : 214 —219
[48] De Barrosa R A , de Azevedoa W M, de Aguiar F M. Mater.Character. , 2003 , 50 : 131 —134
[49] Athawale A A , Katre P P. J . Metastable Nanocrystalline Mater. ,2005 , 23 : 323 —326
[50] Majumdar G, Goswami M, Sarma T K, et al . Langmuir , 2005 ,21(5) : 1663 —1667
[51] KimJ H , Cho J H , Cha G S , et al . Biosens. Bioelectronics ,2000 , 14 : 907 —915
[52] Park J E , Park S G, Koukitu A , et al . Synth. Met . , 2004 , 140 :121 —126
[53] Park J E , Kim S , Mihashi S , et al . Macromol . Symp. , 2002 ,186 : 35 —40
[54] Zhang X W, Wang C S , Appleby A J , et al . J . Power Sources ,2002 , 109 : 136 —141
[55] Feng X M, Mao C J , Yang G, et al . Langmuir , 2006 , 22 :4384 —4389
[56] Tian S J , Liu J Y, Zhu T , et al . Chem. Commun. , 2003 ,2738 —2739
[57] Tian S J , Liu J Y, Zhu T , et al . Chem. Mater. , 2004 , 16 :4103 —4108
[58] Zou X Q , Bao H F , Guo H W, et al . J . Colloid Interface Sci . ,2006 , 295 : 401 —408
[59] Malinauskas A. Synth. Met . , 1999 , 107 : 75 —83
[60] Raitman O A , Katz E , Buckmann A F , et al . J . Am. Chem.Soc. , 2002 , 124 : 6487 —6496
[61] Miyaura N , Suzuki A. Chem. Rev. , 1995 , 95 : 2457 —2483

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[5] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[6] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[7] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[8] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[9] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[10] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[11] 杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪. 硝基芳烃与醇还原胺化:催化剂和催化机制[J]. 化学进展, 2020, 32(1): 72-83.
[12] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[13] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[14] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[15] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.