English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 72-83 DOI: 10.7536/PC190501 前一篇   后一篇

• •

硝基芳烃与醇还原胺化:催化剂和催化机制

杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪**()   

  1. 1. 山东科技大学化学与生物工程学院 青岛 266590
  • 收稿日期:2019-05-08 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 刘迪
  • 基金资助:
    国家自然科学基金项目资助(21878178)

Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism

Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu**()   

  1. 1. College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2019-05-08 Online:2020-01-15 Published:2019-12-11
  • Contact: Di Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21878178)

胺类化合物由于其化学结构和性质上的特点,在合成药物、染料和精细化学品等方面有着重要的应用。胺类化合物的合成方法很多,其中硝基芳烃与醇还原胺化反应由于可以“一锅”法将性质稳定、来源广泛的硝基芳烃、醇转化为各类胺类化合物,且无需提供额外的氢源,从而成为研究的热点。本文即以硝基芳烃与醇还原胺化反应路径为主线,从催化剂及其催化机制两方面对硝基芳烃与醇还原胺化反应的研究进展进行综述,分别对已开发的贵金属催化剂、光催化剂及一些其他类型催化剂作了介绍,重点阐述了催化剂的催化性能、底物适用范围和催化机制。尽管目前各类催化体系都已取得较大的进展,但在一定程度上依然存在着催化剂成本高,底物适应性窄,需要大量使用碱性助剂、溶剂、供氢试剂等问题。基于以上问题,本文指出硝基芳烃与醇还原胺化应重点发展绿色高效、廉价、普适性好、通用性强的催化体系;同时,还要系统地对各种催化剂的催化机制进行深入的研究,为催化体系的开发提供指导。

Amine compounds have been widely applied in the field of pharmaceuticals, dyes and fine chemicals due to its characteristics of chemical structure and property. Many methods for the synthesis of amine compounds are available, in which the reductive amination of nitroarenes and alcohols has attracted extensive attention because nitroarenes and alcohols with the advantages of good accessibility and stable chemical properties can directly be converted to amines by one-pot method without additional hydrogen sources. The recent progress is summarized from two aspects: catalyst and catalytic mechanism based on reaction pathways of the reductive amination of nitroarenes in this article. We introduce all kinds of catalytic systems in detail such as noble metal, photocatalyst, and so on, the catalytic performance, applicability and catalytic mechanism of which are highlighted. It needs to be pointed out that these catalytic systems show varying degrees of success as well as limitations like high cost of catalyst, narrow applicable range of substrates, excessive exogenous base, additional hydrogen source and/or toxic organic solvents. Based on the above problems, it would be desirable to develop a green, efficient, inexpensive and universal catalytic system, the catalytic mechanism of various catalysts should be systematically studied to provide guidance for the development of catalytic system on the other hand.

()
图1 目前常用合成胺类化合物的方法
Fig. 1 Current methods for synthesizing amine compounds
表1 伯醇和硝基芳烃的催化缩合反应a [12]
Table 1 Catalytic condensation of primary alcohols and nitroarenesa [12]
图2 硝基苯与苯甲醇之间的催化串联反应:(a)硝基芳烃还原的两种途径; (b)醇氧化;(c)胺/醛缩合[13]
Fig. 2 Catalyzed tandem reaction between nitrobenzene and benzyl alcohol: (a) two pathways in the reduction of nitroarene; (b) alcohol oxidation, and (c) amine/aldehyde condensation products[13]
图3 反应机制的推测[18]
Fig. 3 Proposed reaction mechanism[18]
图4 以甘油为还原剂合成N-烷基苯胺的可能机制[21]
Fig. 4 The plausible mechanism of the synthesis of N-alkyl aniline using glycerol as the reducing agent[21]
图5 亚胺合成中Cu-Au的协同效应[22]
Fig. 5 Cu-Au cooperation effect in imine production[22]
图6 P25 TiO2催化合成亚胺的反应路径[24]
Fig. 6 Proposed pathways for the imine formation on P25 TiO2 [24]
图7 在CdS-TiO2光催化剂上从苯甲醇和硝基苯一锅法合成亚胺[25]
Fig. 7 The one-pot synthesis of imine from benzyl alcohol and nitrobenzene on the CdS-TiO2 photocatalyst[25]
表2 CdS-TiO2光催化带有不同取代基的苯甲醇和硝基苯一锅法合成亚胺[26]
Table 2 One-pot synthesis of imines from several benzylic alcohols and nitrobenzene on the CdS-TiO2 photocatalyst[26]
表3 Co-N-C/CNT@AC催化硝基苯与醇的还原偶联合成亚胺a [33]
Table 3 Co-N-C/CNT@AC-catalyzed reductive coupling of nitrobenzenes and alcohols to imina [33]
图8 硝基芳烃直接烷基化的机理[34]
Fig. 8 A mechanism path for the direct alkylation of nitroarenes[34]
表4 硝基芳烃与醇还原烷基化结果a [7]
Table 4 Results of the reductive alkylation of nitrobenzenes with alcoholsa [7]
图9 硝基芳烃的还原性N-烷基化反应机理[35]
Fig. 9 Proposed mechanism for the reductive N-alkylation of nitro aromatics[35]
图10 硝基芳烃直接烷基化的反应途径[38]
Fig. 10 A tentative pathway for the direct alkylation of nitroarenes[38]
图11 Pd/TiO2光催化剂催化硝基苯和苯甲醇合成仲胺的反应途径[39]
Fig. 11 Proposed pathway for secondary amine formation from alcohols and nitroarenes on the photoactivated Pd/TiO2 catalyst[39]
图12 Co-N-C/CNT@AC催化硝基苯与苯甲醇还原胺化反应机理研究[33]
Fig. 12 The reaction mechanism for the reductive amination of nitrobenzene with benzyl alcohol over Co-N-C/CNT@AC[33]
表5 催化硝基芳烃与醇合成叔胺a[37]
Table 5 Catalytic formation of tertiary amines from nitroarenes and alcohols a[37]
[1]
Sridhar S K , Ramesh A . Biol. Pharm. Bull., 2001,24:1149. https://www.ncbi.nlm.nih.gov/pubmed/11642321

doi: 10.1248/bpb.24.1149     URL     pmid: 11642321
[2]
Sessler J L , Tomat E , Lynch V M . J. Am. Chem. Soc., 2006,128:4184. https://www.ncbi.nlm.nih.gov/pubmed/16568966

doi: 10.1021/ja0582004     URL     pmid: 16568966
[3]
Andrey B L , Konstantin V D , Emma P P , Fernando L O , Jonathan W S , Rostislav D L . Polyhedron, 2002,21:769.
[4]
Sui D J , Mao F , Fan H P , Qi Z L , Huang J . Chin. J. Chem., 2017,35:1371.
[5]
Imai S , Togo H . Tetrahedron, 2016,72:6948.
[6]
Sridhar S K , Saravanan M , Ramesh A . Eur. J. Med. Chem., 2001,36:615. https://www.ncbi.nlm.nih.gov/pubmed/11600231

doi: 10.1016/s0223-5234(01)01255-7     URL     pmid: 11600231
[7]
Cui X J , Zhang Y , Shi F , Deng Y Q . Chem. Eur. J., 2011,17:2587. https://www.ncbi.nlm.nih.gov/pubmed/21271621

doi: 10.1002/chem.201003095     URL     pmid: 21271621
[8]
Mohamed R M . J. Alloy. Compd., 2015,648:711.
[9]
刘迪(Liu D), 张成慧(Zhang C H), 韩楠(Han N), 杜萌萌(Du M M), 张效露(Zhang X L), 赵朋杉(Zhao P S), 杨萍(Yang P). 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1350.
[10]
Zhang L L , Wang W T , Wang A Q , Cui Y T , Yang X F , Huang Y Q , Liu X Y , Liu W G , Son J Y , Oji H , Zhang T . Green Chem., 2013,15:2680.
[11]
Mona H S . Chinese. Chem. Lett., 2011,22:547.
[12]
Zanardi A , Jose A , Mata J A . Chem. Eur. J., 2010,16:10502. https://www.ncbi.nlm.nih.gov/pubmed/20652912

doi: 10.1002/chem.201000801     URL     pmid: 20652912
[13]
Sabater S , Mata J A , Peris E . Chem. Eur. J., 2012,18:6380. https://www.ncbi.nlm.nih.gov/pubmed/22454223

doi: 10.1002/chem.201103657     URL     pmid: 22454223
[14]
Sankar M , He Q , Dawson S , Nowicka E , Lu L , Bruijnincx P C A , Beale A M , Kiely C J , Weckhuysen B M . Catal. Sci. Technol., 2016,6:5473.
[15]
Cano R , Ramon D J , Yus M . J. Org. Chem., 2011,76:5547. https://www.ncbi.nlm.nih.gov/pubmed/21615080

doi: 10.1021/jo200559h     URL     pmid: 21615080
[16]
陆晓蕾(Lu X L), 张琳(Zhang L), 顾运江(Gu X J), 刘迎新(Liu Y X). 精细化工(Fine Chemicals), 2013,44:29.
[17]
Tan D W , Li H X , Young D J , Lang J P . Tetrahedron, 2016,72:4169.
[18]
Song T , Park J E , Chung Y K . J. Org. Chem., 2018,83:4197. https://www.ncbi.nlm.nih.gov/pubmed/29536727

doi: 10.1021/acs.joc.8b00197     URL     pmid: 29536727
[19]
Tang L , Sun H Y , Li Y F , Zha Z G , Wang Z Y . Green Chem., 2012,14:3423.
[20]
Chen J , Huang S J , Lin J , Su W P . Appl. Catal. A-Gen., 2014,470:1.
[21]
Cui X J , Zhang C G , Shi F , Deng Y Q . Chem. Commun., 2012,48:9391. https://www.ncbi.nlm.nih.gov/pubmed/22892866

doi: 10.1039/c2cc34178f     URL     pmid: 22892866
[22]
Li M , Fernando C L , Keane M A . Appl. Catal. A-Gen., 2018,557:145.
[23]
Mandi U , Roy A S , Kundu S K , Roy S , Bhaumik A , Islam S M . J. Colloid. Interf. Sci., 2016,472:202. https://www.ncbi.nlm.nih.gov/pubmed/27038284

doi: 10.1016/j.jcis.2016.03.037     URL     pmid: 27038284
[24]
Hirakawa H , Katayama M , Shiraishi Y , Sakamoto H , Wang K , Ohtani B , Ichikawa S , Tanaka S , Hirai T . ACS Appl. Mater. Inter., 2015,7:3797. https://www.ncbi.nlm.nih.gov/pubmed/25621386

doi: 10.1021/am508769x     URL     pmid: 25621386
[25]
Higashimoto S , Nakai Y , Azuma M , Takahashi M , Sakata Y . RSC Adv., 2014,4:37662.
[26]
Nakai Y , Azuma M , Muraoka M , Kobayashi H , Higashimoto S . Mol. Catal., 2017,443:203.
[27]
Wu Y H , Ye X J , Zhang S J , Meng S G , Fu X L , Wang X C , Zhang X M , Chen S F . J. Catal., 2018,359:151.
[28]
Ye X J , Chen Y H , Ling C C , Ding R , Wang X C , Zhang X M , Chen S F . Dalton. Trans., 2018,47:10915. https://www.ncbi.nlm.nih.gov/pubmed/30046781

doi: 10.1039/c8dt02278j     URL     pmid: 30046781
[29]
Zhang S J , Huang W X , Fu X L , Chen G L , Meng S G , Chen S F . J. Hazard. Mate., 2018,360:182. https://www.ncbi.nlm.nih.gov/pubmed/30099361

doi: 10.1016/j.jhazmat.2018.07.108     URL     pmid: 30099361
[30]
Perez J M , Cano R , Yus M , Ramon D J . Eur. J. Org. Chem., 2013,44:4548.
[31]
Zhang C H , Zhao P S , Zhang Z L , Zhang J W , Yang P , Gao P , Gao J , Liu D . RSC Adv., 2017,7:47366.
[32]
Yang P , Zhang J W , Liu D , Liu M J , Zhang H , Zhao P S , Zhang C H . Micropor. Mesopor. Mater., 2018,266:198.
[33]
Liu D , Yang P , Zhang H , Liu M J , Zhang W F , Xu D M , Gao J . Green Chem., 2019,21:2129.
[34]
Liu Y , Chen W , Feng C , Deng G J . Chem. Asian J., 2011,6:1142. https://www.ncbi.nlm.nih.gov/pubmed/21381212

doi: 10.1002/asia.201000945     URL     pmid: 21381212
[35]
Cui X J , Deng Y Q , Shi F . ACS Catal., 2013,3:808.
[36]
Peng Q L , Yan Zhang Y , Feng Shi F , Deng Y Q . Chem. Commun., 2011,47:6476. https://www.ncbi.nlm.nih.gov/pubmed/21556401

doi: 10.1039/c1cc11057h     URL     pmid: 21556401
[37]
Tang C H , He L , Liu Y M , Cao Y , He H Y , Fan K N . Chem. Eur. J., 2011,17:7172. https://www.ncbi.nlm.nih.gov/pubmed/21590827

doi: 10.1002/chem.201100393     URL     pmid: 21590827
[38]
Liu H H , Chuah G K , Jaenicke S . Phys. Chem. Chem. Phys., 2015,17:15012 https://www.ncbi.nlm.nih.gov/pubmed/25989446

doi: 10.1039/c5cp00330j     URL     pmid: 25989446
[39]
Selvam K , Sakamoto H , Shiraishi Y , Hirai T . New J. Chem., 2015,39:2467.
[40]
Song Y J , Wang H , Liang S J , Yu Y , Li L Y , Wu L . J. Catal., 2018,361:105. https://linkinghub.elsevier.com/retrieve/pii/S0021951718300630

doi: 10.1016/j.jcat.2018.02.005     URL    
[41]
Feng C , Liu Y , Peng S M , Shuai Q , Deng G J , Li C J . Org. Lett., 2010,12:4888. https://www.ncbi.nlm.nih.gov/pubmed/20929260

doi: 10.1021/ol1020527     URL     pmid: 20929260
[42]
Xiao F H , Liu Y , Tang C L , Deng G J . Org. Lett., 2012,14:984. https://www.ncbi.nlm.nih.gov/pubmed/22292907

doi: 10.1021/ol203211k     URL     pmid: 22292907
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[6] 田少鹏, 任花萍, 陈明淑, 苗宗成, 谭猗生. 非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用[J]. 化学进展, 2022, 34(1): 155-167.
[7] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[8] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[9] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[10] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[11] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[12] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[13] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[14] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[15] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.