English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1737-1748 DOI: 10.7536/PC190442 前一篇   后一篇

• •

同核双金属烯烃聚合催化剂

袁世芳1,2,**(), 闫艺2   

  1. 1. 山西大学应用化学研究所 太原 030006
    2. 山西大学化学化工学院 太原 030006
  • 收稿日期:2019-04-29 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 袁世芳
  • 基金资助:
    国家自然科学基金项目(21101101)

Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization

Shifang Yuan1,2,**(), Yi Yan2   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
    2. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
  • Received:2019-04-29 Online:2019-12-15 Published:2019-10-15
  • Contact: Shifang Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21101101)

与单核金属配合物催化剂相比,双核金属配合物催化剂所具的双金属活性中心对烯烃聚合催化活性和所得聚合物的性能(包括聚合物微结构、分子量大小和分子量分布)产生了重要影响。本文综述了双金属配合物作为均相催化剂催化乙烯聚合及共聚合的最新研究,归纳思路包括不同的金属类型,即基于前过渡金属(Zr, Ti, Hf) 和后过渡金属(Ni, Fe, Co) 的双核金属组合; 不同的配体化合物,即CGC配体、酚氧亚胺配体、氮杂环胺配体、α-二亚胺和亚胺吡啶配体等。这些研究表明,前过渡金属催化剂不仅解决了乙烯自聚还实现了乙烯与α-烯烃共聚;后过渡金属催化剂高效催化乙烯自聚合,其中铁和钴催化剂获得高度线性聚乙烯,镍催化剂则产生多支链聚乙烯。

In comparison with mononuclear metal catalysts in olefin polymerization, bimetallic catalysts having two active species significantly affect catalytic activities and properties of resulting polyolefins(such as microstructure of polymer, molecular weight and polydispersity). Herein we highlight the recent progress of bimetallic catalysts in ethylene polymerization and co-polymerization, which have been illustrated through the differences of metals used either early transition metals(Zr, Ti, Hf) or late transition metals(Ni, Fe, Co), and the varieties of ligands including constrained-geometry catalyst(CGC), phenoxyimines, azaallyl, a-diimines as well as iminopyridines. On the basis of these results, the early-transition metal catalysts have achieved not only homo-polymerization of ethylene but also co-polymerization of ethylene with α-olefin, while the late transition metal catalysts catalyze efficiently polymerization of ethylene, resulting in highly linear polyethylene by iron and cobalt catalysts or higher branched polyethylenes by nickel catalysts.

()
图1 双核钛和锆CGC金属配合物催化剂1和2[26,27,28,29,30,31,32,33,34,35]
Fig. 1 Dinuclear titanium and zirconium CGC metal complex catalysts 1 and 2[26,27,28,29,30,31,32,33,34,35]
图2 双核吡啶胺基铪金属配合物催化剂3和4[34,35,36,37,38]
Fig. 2 Binuclear pyridine amino hafnium metal complex catalysts 3 and 4[34,35,36,37,38]
图3 双核苯酚亚胺金属配合物催化剂5[38,39]
Fig. 3 Dinuclear phenol imine metal complex catalysts 5[38,39]
图4 双核钛配合物催化剂6和7[40]
Fig. 4 Dinuclear titanium complex catalysts 6 and 7[40]
图5 氮杂环双核锆金属配合物催化剂8~11[41,42,43,44]
Fig. 5 Nitrogen heterocyclic dinuclear zirconium metal complex catalysts 8~11[41,42,43,44]
图6 亚甲基桥联α-二亚胺双核镍预催化剂12a~12f[45,46,47,48,49,50,51,52,53,54,55,56,57]
Fig. 6 Methylene-bridged bis(α-diimine) dinickel pre-catalysts 12a~12f[45,46,47,48,49,50,51,52,53,54,55,56,57]
图7 双α-二亚胺双核镍预催化剂13、14[58,59]
Fig. 7 Bis(α-diimine) dinuclear nickel pre-catalysts 13,14[58,59]
图8 α-二亚胺双核镍预催化剂15和16[60,61]
Fig. 8 Bis(α-diimine) dinuclear nickel pre-catalysts 15 and 16[60,61]
图9 双α-二亚胺双核镍预催化剂17和18[62,63]
Fig. 9 Bis(α-diimine) dinuclear nickel pre-catalysts 17 and 18[62,63]
图10 双α-二亚胺双核镍预催化剂19~21[64,65]
Fig. 10 Bis(α-diimine) dinuclear nickel pre-catalysts 19~21[64,65]
图11 双金属镍(Ⅱ)预催化剂22、23[66,67,68]
Fig. 11 Bimetallic nickel(Ⅱ) precatalysts 22,23[66,67,68]
图12 含有苯氧基亚胺的双核镍配合物24[71]
Fig. 12 Phenoxyimine-containing binuclear nickel complexes 24[71]
图13 双核苯氧亚胺-镍配合物25~27[72,73,74,75,76]
Fig. 13 Binuclear phenoxyimine-nickel complexes 25~27[72,73,74,75,76]
图14 双核苯氧亚胺-镍配合物28~30[72,73,74,75,76]
Fig. 14 Binuclear phenoxyimine-nickel complexes 28~30[72,73,74,75,76]
图15 双核镍配合物31带有刚性连接体[72,73,74,75,76]
Fig. 15 Binuclear nickel complexes 31 bearing rigid linkers[72,73,74,75,76]
图16 大环双金属镍配合物32和33[77,78]
Fig. 16 Macrocyclic bimetallic nickel complexes 32,33[77,78]
图17 双金属(Fe和Co)配合物34~36[79,80,81]
Fig. 17 Bimetallic(Fe and Co) complexes 34~36[79,80,81]
图18 双金属Fe和Co配合物37和38[82,83,84]
Fig. 18 Bimetallic(Fe and Co) complexes 37,38[82,83,84]
图19 双金属(Fe和Co)配合物39和40[85,86,87]
Fig. 19 Bimetallic(Fe and Co) complexes 39,40[85,86,87]
图20 亚胺双金属配合物催化剂41[88]
Fig. 20 Imine bimetallic complex catalysts 41[88]
图21 亚胺双金属配合物催化剂42[89,90]
Fig. 21 Imine bimetallic complex catalysts 42[89,90]
图22 亚胺双金属配合物催化剂43~45[93,94,95]
Fig. 22 Imine bimetallic complex catalysts 43~45[93,94,95]
图23 亚胺双金属配合物催化剂46[96]
Fig. 23 Imine bimetallic complex catalysts 46[96]
[1]
Redshaw C, Tang Y . Chem. Soc. Rev., 2012,41:4484. https://www.ncbi.nlm.nih.gov/pubmed/22592513

doi: 10.1039/c2cs35028a     URL     pmid: 22592513
[2]
Wang Z, Solan G A, Zhang W, Sun W H . Coord. Chem. Rev., 2018,363:92.
[3]
Wang Z, Liu Q, Solan G A, Sun W H . Coord. Chem. Rev., 2017,350:68.
[4]
袁世芳(Yuan S J), 王丽静(Wang L J), 张秋月(Zhang Q Y), 孙文华(Sun W H) . 化学进展 (Progress in Chemistry), 2017,29:1462.
[5]
袁世芳(Yuan S J), 牛春霞(Niu C X), 魏学红(Wei X H), 孙文华(Sun W H) . 化学进展 (Progress in Chemistry), 2016,28:1070.
[6]
黄伟(Huang W), 张文娟(Zhang W J), 孙文华(Sun W H) . 高分子通报 (Chinese Polymer Bulletin), 2011,10:63.
[7]
左伟伟(Zuo W W), 孙文华(Sun W H) . 高分子通报 (Chinese Polymer Bulletin), 2009,04:1.
[8]
Gibson V C, Redshaw C, Solan G A . Chem. Rev., 2007,38:1745.
[9]
Gibson V C, Spitzmesser S K . Chem. Rev., 2003,103:283. https://www.ncbi.nlm.nih.gov/pubmed/12517186

doi: 10.1021/cr980461r     URL     pmid: 12517186
[10]
Yuan S F, Bai S D, Liu D S, Sun W H . Organometallics, 2010,29:2132.
[11]
Yuan S F, Zhang L P, Liu D S, Sun W H . Macromol. Res., 2010,18:690. http://link.springer.com/10.1007/s13233-010-0704-9

doi: 10.1007/s13233-010-0704-9     URL    
[12]
Small B L . Acc. Chem. Res., 2015,48:2599. https://www.ncbi.nlm.nih.gov/pubmed/26267011

doi: 10.1021/acs.accounts.5b00252     URL     pmid: 26267011
[13]
Yuan S F, Bai S D, Tong H B, Liu D S, Sun W H . Inorg. Chim. Acta, 2011,370:215.
[14]
Zhong L, Li G, Liang G, Gao H, Wu Q . Macromolecules, 2017,50:2675.
[15]
Wang Z, Solan G A, Mahmood Q, Liu Q, Ma Y, Hao X, Sun W H . Organometallics, 2018,37:380.
[16]
Yuan S F, Duan T, Zhang R D, Solan G A, Ma Y P, Liang T L, Sun W H . Appl. Organomet. Chem., 2019,33:4785.
[17]
Yuan S F, Yue E L, Wen C Y, Sun W H . RSC Adv., 2016,6:7431.
[18]
Wen C Y, Yuan S F, Shi Q S, Yue E L, Liu D S, Sun W H . Organometallics, 2014,33:7223.
[19]
Rhinehart J L, Mitchell N E, Long B K . ACS Catal., 2014,4:2501.
[20]
Camacho D H, Guan Z . Chem. Commun., 2010,46:7879. https://www.ncbi.nlm.nih.gov/pubmed/20852778

doi: 10.1039/c0cc01535k     URL     pmid: 20852778
[21]
Bianchini C, Giambastiani G, Rios I G, Mantovani G, Meli A, Segarra A M . Coord. Chem. Rev., 2006,250:1391.
[22]
Chen Z, Yao E, Wang J, Gong X, Ma Y . Macromolecules, 2016,49:8848.
[23]
Johnson L K, Killian C M, Brookhart M . J. Am Chem. Soc., 1995,117:6414.
[24]
McInnis J P, Delferro M, Marks T J . Acc. Chem. Res., 2014,47:2545. https://www.ncbi.nlm.nih.gov/pubmed/25075755

doi: 10.1021/ar5001633     URL     pmid: 25075755
[25]
Suo H Y, Solan G A, Ma Y P, Sun W H . Coord. Chem. Rev., 2018,372:101.
[26]
Lanza G, Fragala I L, Marks T J . J. Am Chem. Soc., 2000,122:12764.
[27]
H Li, Stern C L, Marks T J. Macromolecules, 2014,38:9015.
[28]
Williams L A, Marks T J . Organometallics, 2009,28:2053.
[29]
Yang X, Stern C L, Marks T J . J. Am. Chem. Soc., 1994,116(22):10015.
[30]
Li L, Metz M V, Li H, Chen M C, Marks T J . J. Am. Chem. Soc., 2002,124:12725. https://www.ncbi.nlm.nih.gov/pubmed/12392420

doi: 10.1021/ja0201698     URL     pmid: 12392420
[31]
Li H, Li L, Marks T J . Angew. Chem. Int. Ed., 2004,43:4937. https://www.ncbi.nlm.nih.gov/pubmed/15372564

doi: 10.1002/anie.200460288     URL     pmid: 15372564
[32]
Motta A, Fragala I L, Marks T J . J. Am. Chem. Soc., 2016,131:3974. https://www.ncbi.nlm.nih.gov/pubmed/19249823

doi: 10.1021/ja8077208     URL     pmid: 19249823
[33]
Li H, Li L, Marks T J, Liable-Sands L, Rheingold A L . J. Am. Chem. Soc., 2003,125, 10788. https://www.ncbi.nlm.nih.gov/pubmed/12952449

doi: 10.1021/ja036289c     URL     pmid: 12952449
[34]
Klosin J, Fontaine P P, Figueroa R . Acc. Chem. Res., 2015,48:2004. https://www.ncbi.nlm.nih.gov/pubmed/26151395

doi: 10.1021/acs.accounts.5b00065     URL     pmid: 26151395
[35]
Resconi L, Cavallo L, Fait A, Piemontesi F . Chem. Rev., 2000,100:1253. https://www.ncbi.nlm.nih.gov/pubmed/11749266

doi: 10.1021/cr9804691     URL     pmid: 11749266
[36]
Baier M C, Zuideveld M A, Mecking S . Angew. Chem. Int. Ed., 2015,45:9722.
[37]
Gao Y, Mouat A R, Motta A, Macchioni A, Zuccaccia C, Delferro M, Marks T J . ACS Catal., 2015,5:5272.
[38]
Salata M R, Marks T J . J. Am. Chem. Soc., 2008,130:12. https://www.ncbi.nlm.nih.gov/pubmed/18076176

doi: 10.1021/ja076857e     URL     pmid: 18076176
[39]
Salata M R, Marks T J . Macromolecules, 2016,42:1920. https://pubs.acs.org/doi/10.1021/ma8020745

doi: 10.1021/ma8020745     URL    
[40]
Han S, Yao E, Qin W, Zhang S, Ma Y . Macromolecules, 2012,45:4054.
[41]
Yuan S F, Wei X H, Tong H B, Zhang L P, Liu D S, Sun W H . Organometallics, 2010,29:2085.
[42]
Yuan S F, Wang L J, Hua Y P, Zhang J, Sun W H . Z. Naturf. B., 2016,71:1019.
[43]
Wei L, Bai S D, Su F, Yuan S F, Duan X E, Liu D S . New J. Chem., 2017,41:661. http://xlink.rsc.org/?DOI=C6NJ02537D

doi: 10.1039/C6NJ02537D     URL    
[44]
Yuan S F, Duan T, Wang L J, Wei X H, Wang X X, Sun W H . Inorg. Chim. Acta, 2017,466:497.
[45]
Younkin T R, Connor E F, Henderson J I, Friedrich S K, Grubbs R H, Bansleben D A . Science, 2000,287:460. https://www.ncbi.nlm.nih.gov/pubmed/10642541

doi: 10.1126/science.287.5452.460     URL     pmid: 10642541
[46]
Liu F S, Hu H B, Xu Y, Guo L H, Zai S B, Song K M, Gao H Y, Zhang L, Zhu F M, Wu Q . Macromolecules, 2009,4:7789.
[47]
Mahmood Q, Zeng Y, Wang X, Sun Y, Sun W H . Dalton Trans., 2017,46:6934. https://www.ncbi.nlm.nih.gov/pubmed/28504797

doi: 10.1039/c7dt01295k     URL     pmid: 28504797
[48]
Yue E, Zeng Y, Zhang W, Huang F, Cao X P, Liang T, Sun W H . Inorg. Chim. Acta, 2016,442:178.
[49]
Huang F, Zhang W J, Sun Y, Hu X Q, Solan G A, Sun W H . New J. Chem., 2016,40:8012.
[50]
Weberski M P, Chen C, Delferro M, Zuccaccia C, Macchioni A, Marks T J . Organometallics, 2012,31:3773.
[51]
Wang J, Yao E, Chen Z, Ma Y . Macromolecules, 2015,48:5504. https://pubs.acs.org/doi/10.1021/acs.macromol.5b01090

doi: 10.1021/acs.macromol.5b01090     URL    
[52]
Cai Z, Xiao D, Do L H . J. Am. Chem. Soc., 2015,137:15501. https://www.ncbi.nlm.nih.gov/pubmed/26562609

doi: 10.1021/jacs.5b10351     URL     pmid: 26562609
[53]
Radlauer M R, Day M W, Agapie T . J. Am. Chem. Soc., 2012,134:1478. https://www.ncbi.nlm.nih.gov/pubmed/22225528

doi: 10.1021/ja210990t     URL     pmid: 22225528
[54]
Radlauer M R, Day M W, Agapie T . Organometallics, 2012,31:2231. https://www.ncbi.nlm.nih.gov/pubmed/22711966

doi: 10.1021/om2011694     URL     pmid: 22711966
[55]
Radlauer M R, Buckley A K, Henling L M, Agapie T . J. Am. Chem. Soc., 2013,135:3784. https://www.ncbi.nlm.nih.gov/pubmed/23425209

doi: 10.1021/ja4004816     URL     pmid: 23425209
[56]
Makio H, Terao H, Iwashita A, Fujita T . Chem. Rev., 2011,111:2363. https://www.ncbi.nlm.nih.gov/pubmed/21250670

doi: 10.1021/cr100294r     URL     pmid: 21250670
[57]
Kong S, Song K, Liang T, Guo C Y, Sun W H, Redshaw C . Dalton Trans., 2013,42:9176. https://www.ncbi.nlm.nih.gov/pubmed/23460131

doi: 10.1039/c3dt00023k     URL     pmid: 23460131
[58]
Zhu L, Fu Z, Pan H, Peng W, Chen C, Fan Q Z . Dalton Trans., 2014,43:2900. https://www.ncbi.nlm.nih.gov/pubmed/24343297

doi: 10.1039/c3dt51782a     URL     pmid: 24343297
[59]
Xing Q, Song K, Liang T, Liu Q, Sun W H, Redshaw C . Dalton Trans., 2014,43:7830. https://www.ncbi.nlm.nih.gov/pubmed/24699982

doi: 10.1039/c4dt00503a     URL     pmid: 24699982
[60]
Khoshsefat M, Zohuri G H, Ramezanian N, Ahmadjo S, Haghpanah M J . Polym. Sci. Part A: Polym. Chem., 2016,54:3000.
[61]
Savjani N, Singh K, Solan G A . Inorg. Chim. Acta, 2015,436:184.
[62]
Jie S, Zhang D, Zhang T, Sun W H, Chen J, Ren Q, Liu D, Zheng G, Chen W J . Polym. Sci. Part A Polym. Chem., 2005,690:1739.
[63]
Zeng Y N, Xing Q F, Ma Y P, Sun W H . Chin. J. Polym. Sci., 2018,36:207.
[64]
Wang R, Sui X, Pang W, Chen C . ChemCatChem, 2016,8:434.
[65]
Na Y, Wang X, Lian K, Zhu Y, Li W, Luo Y, Chen C . ChemCatChem, 2017,9:1062.
[66]
Rodriguez B A, Delferro M, Marks T J . Organometallics, 2008,27:2166.
[67]
Rodriguez B A, Delferro M, Marks T J . J. Am. Chem. Soc., 2009,131:5902. https://www.ncbi.nlm.nih.gov/pubmed/19351155

doi: 10.1021/ja900257k     URL     pmid: 19351155
[68]
Weberski M P, Chen C, Delferro M, Marks T J . Chem. Eur. J., 2012,18:10715. https://www.ncbi.nlm.nih.gov/pubmed/22807059

doi: 10.1002/chem.201200713     URL     pmid: 22807059
[69]
Soldatov D V, Henegouwen A T, Enright G D, Ratcliffe C I, Ripmeester J A . Inorg. Chem., 2001,40:1626. https://www.ncbi.nlm.nih.gov/pubmed/11261973

doi: 10.1021/ic000981g     URL     pmid: 11261973
[70]
Brandon M D, Rodriguez A, Marks T J . J. Am. Chem. Soc., 2013,135:17651. https://www.ncbi.nlm.nih.gov/pubmed/24191741

doi: 10.1021/ja409590r     URL     pmid: 24191741
[71]
Guironnet D, Friedberger T, Mecking S . Dalton Trans., 2009,41:8929. https://www.ncbi.nlm.nih.gov/pubmed/19826725

doi: 10.1039/b912883b     URL     pmid: 19826725
[72]
Hu T, Tang L M, Li X F, Li Y S, Hu N H . Organometallics, 2005,24:2628.
[73]
Wang W H, Jin G X . Inorg. Chem. Commun., 2006,9:548. https://linkinghub.elsevier.com/retrieve/pii/S1387700306000712

doi: 10.1016/j.inoche.2006.02.015     URL    
[74]
Wehrmann P, Mecking S . Organometallics, 2008,27:1399.
[75]
Hu T, Li Y G, Li Y S, Hu N H . J. Mol. Catal. A: Chem., 2006,253:155.
[76]
Chen Q, Yu J, Huang J . Organometallics, 2007,26:617.
[77]
Na S J, Joe D J, Sujith S, Han W S, Kang S O, Lee B Y . J. Organomet. Chem., 2006,691:611.
[78]
Takeuchi D, Chiba Y, Takano S, Osakada K . Angew. Chem. Int. Ed., 2013,52:12536. https://www.ncbi.nlm.nih.gov/pubmed/24249551

doi: 10.1002/anie.201307741     URL     pmid: 24249551
[79]
Bianchini C, Giambastiani G, Rios I G, Meli A, Oberhauser W, Sorace L, Toti A . Organometallics, 2007,26:5066.
[80]
Bianchini C, Mantovani G, Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A . Eur. J. Inorg. Chem., 2003,1620.
[81]
Barbaro P, Bianchini C, Giambastiani G, Rios I G, Meli A, Oberhauser W, Segarra A M, Sorace L, Toti A . Organometallics, 2007,26:4639.
[82]
Khamker Q, Champouret Y D M, Singh K, Solan G A . Dalton Trans., 2009,41:8935. https://www.ncbi.nlm.nih.gov/pubmed/19826726

doi: 10.1039/b910181k     URL     pmid: 19826726
[83]
Champouret Y D M, Marechal J D, Dadhiwala I, Fawcett J, Palmer D, Singh K, Solan G A . Dalton Trans., 2006,19:2350. https://www.ncbi.nlm.nih.gov/pubmed/16688323

doi: 10.1039/b516083a     URL     pmid: 16688323
[84]
Savjani N, Singh K, Solan G A . Inorg. Chim. Acta, 2015,436:184.
[85]
Zhang S, Sun W H, Kuang X, Vystorop I, Yi J J . Organomet. Chem., 2007,692:5307.
[86]
Zhang S, Vystorop I, Tang Z, Sun W H . Organometallics, 2007,26:2456.
[87]
Sun W H, Xing Q, Yu J, Novikova E, Zhao W, Tang X, Liang T, Redshaw C . Organometallics, 2013,32:2309.
[88]
Wang L, Sun J . Inorg. Chim. Acta, 2008,361:1843.
[89]
Xing Q, Zhao T, Du S, Yang W, Liang T, Redshaw C, Sun W H . Organometallics, 2014,33:1382.
[90]
Xing Q, Zhao T, Qiao Y, Wang L, Redshaw C, Sun W H . RSC Adv., 2013,3:26184.
[91]
Britovsek G J P, Bruce M, Gibson V C, Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C, Solan G A, Strömberg S, White A J P, Williams D J . J. Am. Chem. Soc., 1999,121.
[92]
Yu J, Liu H, Zhang W, Hao X, Sun W H . Chem. Commun., 2011,47:3257. https://www.ncbi.nlm.nih.gov/pubmed/21279230

doi: 10.1039/c0cc05373b     URL     pmid: 21279230
[93]
Chen Q, Zhang W, Solan G A, Liang T, Sun W H . Dalton Trans., 2018,47:6124. https://www.ncbi.nlm.nih.gov/pubmed/29666852

doi: 10.1039/c8dt00907d     URL     pmid: 29666852
[94]
Chen Q, Zhang W J, Solan G A, Zhang R D, Guo L W, Hao X, Sun W H . Organometallics, 2018,37:4002.
[95]
Chen Q, Suo H Y, Zhang W J, Zhang R D, Solan G A, Liang T L, Sun W H . Dalton Trans., 2019,48:8264. https://www.ncbi.nlm.nih.gov/pubmed/31099370

doi: 10.1039/c9dt01235d     URL     pmid: 31099370
[96]
Takeuchi D, Takano S, Takeuchi Y, Osakada K . Organometallics, 2014,33:5316.
[1] 雷雨洋, 李方方, 欧阳洁, 李敏杰, 郭良宏. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425.
[2] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[3] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[4] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[5] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[6] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[7] 金超, 秦瑶, 杨金虎. 新型非TiO2金半导体光催化剂[J]. 化学进展, 2014, 26(0203): 225-233.
[8] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[9] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[10] 桑丽霞, 孙彪, 李艳霞, 吴玉庭, 马重芳. 太阳能甲烷重整反应中的催化活性吸收体[J]. 化学进展, 2011, 23(11): 2233-2239.
[11] 张娜, 张生, 朱彤, 尹鸽平. 金属氧化物在低温燃料电池催化剂中的应用[J]. 化学进展, 2011, 23(11): 2240-2246.
[12] 邵燕 姚楠 卢春山 吕德义 刘化章 李小年. 用于选择性合成清洁液体燃料的钴基F-T合成催化剂*[J]. 化学进展, 2010, 22(10): 1911-1920.
[13] 魏平玉,杨青林,郭林. 卤氧化铋化合物光催化剂[J]. 化学进展, 2009, 21(09): 1734-1741.
[14] 李新贵,孙晋,黄美荣. 聚苯胺/金属纳米粒子复合物的制备及性能[J]. 化学进展, 2007, 19(05): 787-795.
[15] 吴宗斌,田鹏,刘中民,毛宗强. 多孔膦酸盐的研究进展*[J]. 化学进展, 2006, 18(09): 1092-1100.
阅读次数
全文


摘要

同核双金属烯烃聚合催化剂