English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 516-535 DOI: 10.7536/PC180810 前一篇   后一篇

• •

局域表面等离子体共振效应在光催化技术中的应用

姚国英, 刘清路, 赵宗彦**()   

  1. 昆明理工大学材料科学与工程学院 昆明 650093
  • 收稿日期:2018-08-15 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 赵宗彦
  • 基金资助:
    国家自然科学基金项目(21473082); 云南省科技厅第18批中青年学术带头人后备人才项目(2015HB015)

Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis

Guoying Yao, Qinglu Liu, Zongyan Zhao**()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2018-08-15 Online:2019-01-15 Published:2019-01-14
  • Contact: Zongyan Zhao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21473082); 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project(2015HB015)

表面等离子激元是物理效应在光催化技术应用中的典型代表之一,作为新型光场调控技术为光催化技术的发展开辟了新的方向和思路,能够从全新的角度解决光催化技术的发展瓶颈,在过去十年来得到了广泛的研究。局域表面等离子体共振效应能够通过调节纳米颗粒的组成、形貌和介质环境等因素调控光催化体系的光谱响应范围。除此之外还能够通过增强光散射、热电子注入、诱导产生强烈的局域电场、加热周围环境等方法来增加光催化剂的氧化-还原反应速度、物质传输以及极化光催化材料表面的吸附分子,从而进一步增强材料的光催化性能。将这些优势集成到光催化材料体系中,能够显著提高传统光催化材料的太阳能转换效率,这是一个非常值得关注的发展方向。本文综述了局域表面等离子体共振效应在光催化技术中应用的基本原理、调控规律和应用等方面的研究进展,着重讨论了热电子的产生和迁移过程,贵金属中带间跃迁和表面等离子体共振效应的制约关系。最后,总结了表面等离子体光催化剂所面临的问题和挑战,并进行了相应的研究展望。

The surface plasmon effect is a typical representative of the application of physical effects in photocatalysis technology. And as new control technology of light field, it has opened up new directions and new ideas for the development of photocatalysis technology. The bottleneck of the development of photocatalytic technology can be solved from a new perspective, and has been extensively studied in the past decade. The localized surface plasmon resonance effect can regulate the spectral response range of the photocatalytic system by adjusting the composition, morphology and medium environment of the nanoparticles. In addition, the photocatalyst redox reaction rate, mass transfer, and adsorbed molecules on the surface of the polarized photocatalytic material can be increased by enhancing light scattering, hot electron injection, inducing a strong local electric field, and heating the surrounding environment, thereby further enhancing the photocatalytic properties of the material. Integrating these advantages into a photocatalytic material system can significantly improve the solar energy conversion efficiency of conventional photocatalytic materials, which is a very interesting development direction. In this review, the basic principles, material composition, regulation and recent progress of surface plasmon resonance in photocatalytic systems are presented in detail. Not only the process of generation and migration of hot electrons, but also the relationship between interband transition and surface plasmon resonance in noble metals is discussed. Finally, the prospective and challenges for future development of plasmonic photocatalysis are summarized.

()
图1 表面等离子激元机理图:(a)SPP机理图;(b)SPP的电场在垂直方向呈指数递减;(c)SPP的色散曲线[40]
Fig. 1 The principle of surface plasmons polaritions.(a) SPP mechanism diagram;(b) the electric field of SPP decreases exponentially in the vertical direction;(c) dispersion curve of Surface Plasmon Polariton [40]. Copyright 2003, Springer Nature.
图2 金属球的LSPR产生机理图[42]
Fig. 2 The mechanism of LSPR generation of metal spheres [42]. Copyright 2003, American Chemical Society.
图3 热电子在金属中产生和驰豫过程[46]
Fig. 3 The process of generating and relaxing hot electrons in metals [46]. Copyright 2015, Springer Nature.
图4 在金属/半导体结构中的能量转移机制[51]
Fig. 4 Energy transfer mechanism in metal/semiconductor structures[51]. Copyright 2015, American Chemical Society.
图5 等离子体激发诱导电子直接机制[54]
Fig. 5 Plasmon-induced direct electron injection mechanism [54]. Copyright 2016, Springer Nature.
图6 理论计算的纳米球(黑实线)和纳米壳(蓝实线)的远场消光效率:(A)Ag;(B)Au;(C)Cu;ε'和ε″分别为材料介电函数的实部与虚部[61]
Fig. 6 Theoretically calculate the far-field extinction efficiency of nanospheres(black solid lines) and nanoshells(blue solid lines):(A) Ag;(B) Au;(C) Cu; ε'and ε″ are the real and imaginary parts of material dielectric functions, respectively [61]. Copyright 2005, American Chemical Society.
图7 两种声子能量模式;类LSPR模式(绿粗线)和类带间跃迁模式(红细线)[62]
Fig. 7 Two phonon energy modes; like-LSPR mode(green thick line) and like-interband transition mode(red thin line) [62]. Copyright 2011, American Chemical Society.
图8 在非相互作用的情况下纳米球电场强度的空间分布:(a)Drude模型;(b)洛伦兹模型;(c~e)Drude-洛伦兹模型在强相互作用情况下;(f)Drude(红线),洛伦兹(绿线)和DL模型(黑线)描述的纳米球的光吸收谱[62]
Fig. 8 Spatial distributions of the E-field intensity(|E|2) of a nanosphere(a=10 nm) described by(a) the Drude model and(b) the Lorentz model in the noninteracting cases as well as(c~e) the DL model in the strong interaction case.(f) Optical absorption spectra of the nanospheres described by the Drude(red line), Lorentz(green line), and DL models(dark line)[62]. Copyright 2011, American Chemical Society.
图9 5个金属纳米球的LSPR以及对应的电场强度;绿色阴影为金属的带间跃迁,红色虚线为金属的介电函数
Fig. 9 The LSPR absorption of five metals nanosphere and corresponding electric field strength; green shading is the interband transition of the metal, and red dashed line is the dielectric function of the metal
图10 具有不同不连续Ag壳厚度的双金属Au/Ag核-壳超结构的(A)代表性UV-vis-NIR吸收光谱:(a)8,(b)12,(c)15,(d)18,(e) 20,和(f)22 nm;插图为相应的溶液颜色照片。(B)纵向吸收峰强度与Ag壳厚度的关系[82]
Fig. 10 Representative UV-vis-NIR absorption spectra of bimetallic Au/Ag core-shell superstructures;(A) with different discontinuous Ag shell thicknesses:(a) 8,(b) 12,(c) 15,(d) 18,(e) 20, and(f) 22 nm; corresponding inset photographs of solution color.(B) Plot of longitudinal absorption peak intensity versus thickness of Ag shell[82]. Copyright 2017, American Chemical Society.
图11 以新月结构是平衡结构的条件下,对于Ag不同原子分数计算三种可能的Cu-Ag形状的能量,这种划分与实验结果相匹配[86]
Fig. 11 Calculated energies of three possible Cu-Ag shapes for different atomic fractions of Ag under the condition where the crescent is the equilibrium structure, such division matches the experimentally obtained results [86]. Copyright 2018, American Chemical Society.
图12 纳米复合材料的能带机理图(a) Ag/AgCl/BiOCl;(b) Ag/AgBr/BiOBr [90]
Fig. 12 Energy band diagram of nanostructures(a) Ag/AgCl/BiOCl and(b) Ag/AgBr/BiOBr [90]. Copyright 2012, American Chemical Society.
图13 Bi纳米颗粒根据形貌、环境介电常数、尺寸调控共振峰位置[102]
Fig. 13 Bi nanoparticles control the position of the resonance peak according to the morphology, environmental permittivity and size [102]. Copyright 2012, American Chemical Society.
图14 空气暴露氧化过程中化学计量在甲苯中的可见-近红外消光谱的时间演变图和XRD图谱的演变。 (a、c、e)分别为Cu2-xS(x=0,黑色曲线)、Cu2-xSe(x=0,黑色曲线)和Cu2-xTe(x> 0)纳米晶体在甲苯中的Vis-NIR消光光谱。(b、d、f)为氧化期间(a、c、e)中所示的Cu2-xS、Cu 2-xSe、Cu2-xTe的XRD图谱的时间演变[116]
Fig. 14 The time evolution of the visible-near-infrared spectroscopy of stoichiometry in toluene during air exposure oxidation and the evolution of the XRD patterns. Nanocrystals in Vis-NIR in toluene Extinction spectrum(a) Cu2-xS(x=0, black curve),(c) Cu2-xSe(x=0, black curve) and(e) Cu2-xTe(x > 0). The time evolution of the XRD patterns of(b) Cu2-xS,(d) Cu2-xSe,(f) Cu2-xTe shown in the oxidation period(a, c, e) [116]. Copyright 2012, American Chemical Society.
图15 阳离子置换:Cu2-xS进一步被In3+置换成CuInS2[120]
Fig. 15 Cu2-xS is further replaced by In3+ into CuInS2[120]. Copyright 2015, American Chemical Society.
图16 椭偏仪测量的ZnO和Al掺杂的ZnO(AZO)在近红外的介电函数[115]
Fig. 16 Dielectric properties of ZnO and Al-doped ZnO(AZO) in near-infrared measured by ellipsometry [115]. Copyright 2012, National Academy of Sciences.
图17 金属纳米棒的两种LSPR振动形式(a)电场与入射光垂直产生横向振动;(b)电场与入射光平行产生纵向振动[144]
Fig. 17 Schematic of two types of LSPR of metallic nanorods;(a) lateral resonance;(b) longitudinal resonance[144]. Copyright 2018, Multidisciplinary Digital Publishing Institute.
图18 Cu2-xS/MoS2纳米八面体的光学性质[122]
Fig. 18 Optical properties of Cu2-xS/MoS2 nano-octahedra [122]. Copyright 2018, American Chemical Society.
图19 (a)不同异质纳米晶体的光催化氢生成速率。用(b)Auvertex-Cu2O,(c)Auvertex-exp-Cu2O和(d)AuHOH @Cu2O 异质纳米晶体获得的消光光谱;(e)Auvertex-Cu2O 异质纳米晶体可能的等离子体激元诱导的电荷分离过程的示意图;(f)用于计算| E |的FDTD仿真模型异质纳米晶体:Auvertex-Cu2O(Ⅰ,Ⅴ),Auvertex-exp-Cu2O(Ⅱ,Ⅵ),AuHOH @Cu2O(Ⅲ,Ⅶ)和Ausphere @Cu2O异质纳米晶体(Ⅳ,Ⅷ)[148]
Fig. 19 (a) Photocatalytic hydrogen generation rate of different heterogeneous nanocrystals; The extinction spectrum obtained with(b) Auvertex-Cu2O,(c) Auvertex-exp-Cu2O and(d) AuHOH@Cu2O heterogeneous nanocrystals.(e) Schematic diagram of possible plasmon-induced charge separation processes for Auvertex-Cu2O heterogeneous nanocrystals.(f) FDTD simulation model heterogeneous nanocrystals used to calculate | E | Auvertex-Cu2O(Ⅰ,Ⅴ), Auvertex-exp-Cu2O(Ⅱ,Ⅵ), AuHOH @Cu2O(Ⅲ,Ⅶ) and Ausphere @Cu2O Heteronanocrystals(Ⅳ,Ⅷ) [148]. Copyright 2016, American Chemical Society.
[1]
Fujishima A, Honda K . Nature, 1972,238(5358):37.
[2]
Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Appl. Catal . B: Environ., 2003,42(4):403.
[3]
Xu M, Da P M, Wu H Y, Zhao D Y ,Zheng G F. Nano Lett, 2012,12(3):1503.
[4]
Yin G N, Ma J X, Jiang H, Li J, Yang D, Gao F, Zeng J H, Liu Z K ,Liu S D. ACS Appl Mater. Interfaces, 2017,9(12):10752.
[5]
Long R, English N J . J. Phys. Chem. C, 2009,113(21):9423.
[6]
Long R, English N J . J. Phys. Chem. C, 2010,114(27):11984.
[7]
Mowbray D J, Martinez J I, Lastra J M G, Thygesen K S, Jacobsen K W. J. . Phys. Chem. C, 2010,113(28):12301.
[8]
Song J N, Zheng M J, Yuan X L, Li Q, Wang F, Ma L G, You Y X, Liu S H, Liu P J, Jiang D K, Ma L, Shen W Z . Mater. Sci., 2017,52(12):6976.
[9]
Han X X, Huang J, Jing X X, Yang D Y, Lin H, Wang Z G, Li P, Chen Y . ACS Nano, 2018,12(5):4545.
[10]
Nishioka S, Hyodo J, Vequizo J J M, Yamashita S, Kumagai H, Kimoto K, Yamakata A, Yamazaki Y, Maeda K . ACS Catalysis, 2018,8(8):7190.
[11]
Bessekhouad Y, Robert D, Weber J V . J. Photochem. Photobiol. A: Chem., 2004,163(3):569.
[12]
Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M, He J . Nanoscale, 2013,5(18):8326.
[13]
Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y. Energy Environ . Sci., 2018,11(1):106.
[14]
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R ,Yakobson B I. Nat. Mater, 2014,13(12):1135.
[15]
Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H, Chen W ,Zhu J Q. Adv. Mater, 2015,28:1950
[16]
Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J ,Ajayan P M. Nat. Commun, 2016,7:12512.
[17]
Tada H, Suzuki F, Ito S, Akita T, Tanaka K, Kawahara T, Kobayashi H . J. Phys. Chem. B, 2002,106(34):8714.
[18]
Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C . Catal., 2009,266(2):165.
[19]
Foo W J, Zhang C, Ho G W . Nanoscale, 2013,5(2):759.
[20]
An B, Zhang J Z, Cheng K, Ji P F, Wang C, Lin W B . Am. Chem. Soc., 2017,139(10):3834. https://www.ncbi.nlm.nih.gov/pubmed/28209054

doi: 10.1021/jacs.7b00058     URL     pmid: 28209054
[21]
Chau L K, Lin Y F, Cheng S F ,Lin T J. Sens. Actuator. B: Chem., 2006,113(1):100.
[22]
Homola J . Chem.Rev., 2008,108(2):462.
[23]
Zhang S H, Huang Q, Zhang L J, Zhang H, Han Y B, Sun Q, Cheng Z X, Qin H Z, Dou S X, Li Z . Nanoscale, 2018,10(7):3130.
[24]
Wang F F, Wang H J, Liu X Y, Wu D P, Jiang K, Li Q ,Xu D S. Adv. Energy Mater, 2018,8(20):1800136.
[25]
Kardarian K, Nunes D, Maria Sberna P, Ginsburg A, Keller D A, Vaz Pinto J, Deuermeier J, Anderson A Y, Zaban A, Martins R ,Fortunato E. Sol. Energy Mater. Sol. Cells, 2016,147:27.
[26]
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T . Am. Chem. Soc., 2008,130(5):1676. https://www.ncbi.nlm.nih.gov/pubmed/18189392

doi: 10.1021/ja076503n     URL     pmid: 18189392
[27]
Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y ,Whangbo M H. Angew. Chem. Int. Edi., 2008,47(41):7931.
[28]
Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H . Chem. -A Eur. J., 2009,15(8):1821.
[29]
Chen X, Zhu H Y, Zhao J C, Zheng Z F ,Gao X P. Angew. Chem. Int Edit., 2008,47(29):5353.
[30]
Jain P K, Lee K S , El-Sayed I H, El-Sayed M A . J. Phys. Chem. B, 2006,110(14):7238.
[31]
Linic S, Christopher P ,Ingram D B. Nat. Mater, 2011,10(12):911.
[32]
Zhou C G, Wang S M, Zhao Z Y, Shi Z, Yan S C ,Zou Z G. Adv. Funct. Mater, 2018,28(31):1801214.
[33]
Yang J H, Guo Y Z, Jiang R B, Qin F, Zhang H, Lu W Z, Wang J F, Yu J C . Am. Chem. Soc., 2018,140(27):8497. https://www.ncbi.nlm.nih.gov/pubmed/29905477

doi: 10.1021/jacs.8b03537     URL     pmid: 29905477
[34]
Patnaik S, Swain G, Parida K M . Nanoscale, 2018,10(13):5950.
[35]
Zeng Z P, Li T, Li Y B, Dai X C, Huang M H, He Y H, Xiao G C, Xiao F X . J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA08841A.
[36]
Lou Z Z, Wang Z Y, Huang B B, Dai Y . ChemCatChem, 2014,6(9):2456.
[37]
Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y ,Qin X Y. Phys. Chem. Chem Phys., 2014,16(7):2758.
[38]
Liu L Q, Zhang X N, Yang L F, Ren L T, Wang D F ,Ye J H. Nat. Sci. Rev, 2017,4(5):761.
[39]
Zhang N, Han C, Fu X Z, Xu Y J . Chem, 2018,4(8):1832.
[40]
Barnes W L, Dereux A, Ebbesen T W . Nature, 2003,424:824.
[41]
Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R ,Tian Z Q. Nat. Rev. Mater, 2016,1:16021.
[42]
Kelly K L, Coronado E, Zhao L L, Schatz G C . J. Phys. Chem. B, 2003,107(3):668.
[43]
Sambles J R, Bradbery G W, Yang F . Contemp. Phys 1991,32(3):173.
[44]
Eustis S, ,El-Sayed M A. Chem. Soc. Rev., 2006,35(3):209.
[45]
Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E . J. Phys. Chem. C, 2012,116(39):20887.
[46]
Linic S, Aslam U, Boerigter C, Morabito M . Nat. Mater 2015,14(6):567.
[47]
Low J X, Qiu S Q, Xu D F, Jiang C J ,Cheng B. Appl. Surf. Sci, 2018,434:423.
[48]
Li M, Xing Z P, Jiang J J, Li Z Z, Yin J W, Kuang J Y, Tan S Y, Zhu Q, Zhou W . Taiwan Inst. Chem. Eng., 2018,82:198.
[49]
Tanaka A, Hashimoto K, Kominami H . Chem. Commun 2017,53(35):4759.
[50]
Jiao Z B, Shang M D, Liu J M, Lu G X, Wang X S, Bi Y P . Nano Energy, 2017,31:96.
[51]
Cushing S K, Li J, Meng F, Senty T R, Suri S, Zhi M, Li M, Bristow A D, Wu N . J Am Chem Soc, 2012,134(36):15033.
[52]
Lu B, Liu A P, Wu H P, Shen Q P, Zhao T Y, Wang J S . Langmuir, 2016,32(12):3085.
[53]
Li J T, Cushing S K, Bright J, Meng F, Senty T R, Zheng P, Bristow A D ,Wu N Q. ACS Catal, 2014,3(1):47.
[54]
Ma X C, Dai Y, Yu L, Huang B B . Light: Sci. Appl., 2016,5:e16017.
[55]
Christopher P, Xin H, Linic S . Nat. Chem 2011,3:467.
[56]
Liu L C, Ji Z Y, Zou W X, Gu X R, Deng Y, Gao F, Tang C J, Dong L . ACSCatal., 2013,3(9):2052.
[57]
Meng X G, Wang T, Liu L Q, Ouyang S X, Li P, Hu H L, Kako T, Iwai H, Tanaka A ,Ye J H. Angew. Chem. Int. Edit., 2014,53(43):11478.
[58]
Liu H M, Meng X G, Dao T D, Zhang H B, Li P, Chang K, Wang T, Li M, Nagao T ,Ye J H. Angew. Chem. Int. Edit., 2015,54(39):11545.
[59]
Schelm S ,Smith G B. Appl. Phys. Lett, 2003,82(24):4346.
[60]
Chen C J ,Chen D H. Chem. Eng. J, 2012,180(6):337.
[61]
Wang H, Tam F, Grady N K, Halas N J . J. Phys. Chem. B, 2005,109(39):18218.
[62]
Pakizeh T . J. Phys. Chem. C, 2011,115(44):21826.
[63]
Zhang Z S, Liu L H, Fang W H, Long R, Tokina M V, Prezhdo O V . Chem, 2018,4(5):1112.
[64]
Long R, Prezhdo O V . Am. Chem. Soc., 2014,136(11):4343. https://www.ncbi.nlm.nih.gov/pubmed/24568726

doi: 10.1021/ja5001592     URL     pmid: 24568726
[65]
Powell C J . Phys. Rev., 1965,15(22):852.
[66]
Powell C J . Phys. Rev., 1968,175(3):972.
[67]
Hagemann H J, Gudat W, Kunz C . Opt. Soc. Am., 1975,65(6):742.
[68]
Sugawa K, Yamaguchi D, Tsunenari N, Uchida K, Tahara H, Takeda H, Tokuda K, Jin S, Kusaka Y, Fukuda N. ACS Appl . Mater. Interfaces, 2016,9(1):750.
[69]
Sugawa K, Tsunenari N, Takeda H, Fujiwara S, Akiyama T, Honda J, Igari S, Inoue W, Tokuda K, Takeshima N, Watanuki Y, Tsukahara S, Takase K, Umegaki T, Kojima Y, Nishimiya N, Fukuda N, Kusaka Y, Ushijima H, Otsuki J . Langmuir, 2017,33(23):5685.
[70]
Mcmahon J M, Schatz G C ,Gray S K. Phys. Chem. Chem. Phys., 2013,15(15):5415.
[71]
Xiao F X, Zeng Z P, Liu B . Am. Chem. Soc., 2015,137(33):10735. https://www.ncbi.nlm.nih.gov/pubmed/26258281

doi: 10.1021/jacs.5b06323     URL     pmid: 26258281
[72]
Gao Y, Lin J Y, Zhang Q Z, Yu H, Ding F, Xu B T, Sun Y G ,Xu Z H. Appl. Catal. B: Environ., 2018,224:586.
[73]
Cheng W R, Su H, Tang F M, Che W, Huang Y Y, Zheng X S, Yao T, Liu J K, Hu F C, Jiang Y, Liu Q H, Wei S Q . J. Mater. Chem. A, 2017,5(37):19649.
[74]
Kumari G, Zhang X Q, Devasia D, Heo J, Jain P K . ACS Nano, 2018,12(8):8330.
[75]
Liu L Q, Ouyang S X ,Ye J H. Angew. Chem, 2013,125(26):6821.
[76]
Liu L Q, Dao T D, Kodiyath R, Kang Q, Abe H, Nagao T ,Ye J H. Adv. Funct. Mater, 2014,24(48):7754.
[77]
Zhu M S, Cai X Y, Fujitsuka M, Zhang J Y ,Majima T. Angew. Chem. Int Edit., 2017,129(8):2096.
[78]
Zhang Z Y, Cao S W, Liao Y S, Xue C. Appl. Catal . B: Environ., 2015,162:204.
[79]
Verma P, Yuan K, Kuwahara Y, Mori K, Yamashita H. Appl. Catal . B: Environ., 2018,223:10.
[80]
Zhou Y X, Wang D S ,Li Y D. Chem. Commun, 2014,50(46):6141.
[81]
Cui Q L, Shen G Z, Yan X H, Li L D, Möhwald H, Bargheer M. ACS Appl . Mater. Interfaces, 2014,6(19):17075.
[82]
Dai L W, Song L P, Huang Y J, Zhang L, Lu X F, Zhang J W, Chen T . Langmuir, 2017,33(22):5378.
[83]
Pellarin M, Issa I, Langlois C, Lebeault M A, Ramade J, Lermé J, Broyer M, Cottancin E J . J. Phys. Chem. C, 2015,119(9):5002.
[84]
Govorov A O, Zhang H, Gun’ko Y K . J. Phys. Chem. C, 2013,117(32):16616.
[85]
Liu L Q, Li P, Adisak B, Ouyang S, Umezawa N, Ye J H, Kodiyath R, Tanabe T, Ramesh G V, Ueda S . J. Mater. Chem. A, 2014,2(25):9875.
[86]
Osowiecki W T, Ye X C, Satish P, Bustillo K C, Clark E L, Alivisatos A P . Am. Chem. Soc., 2018,140(27):8569. https://www.ncbi.nlm.nih.gov/pubmed/29909616

doi: 10.1021/jacs.8b04558     URL     pmid: 29909616
[87]
Wang P, Huang B B, Lou Z Z, Zhang X Y, Qin X Y, Dai Y, Zheng Z K, Wang X N . Chem.-A Eur. J., 2009,16(2):538.
[88]
Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y . Langmuir, 2010,26(9):6618.
[89]
Liang X Z, Wang P, Li M M, Zhang Q Q, Wang Z Y, Dai Y, Zhang X Y, Liu Y Y, Whangbo M H ,Huang B B. Appl. Catal. B: Environ., 2018,220:356.
[90]
Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal ., 2012,2(8):1677.
[91]
Zhang P Y, Song T, Wang T T ,Zeng H P. RSC Adv, 2017,7(29):17873.
[92]
Zhang P Y, Song T, Wang T T ,Zeng H P. Appl. Catal. B: Environ., 2018,225:172.
[93]
Zhang P Y, Song T, Wang T T ,Zeng H P. Int. J. Hydrogen Energy, 2017,42(21):14511.
[94]
Zhang P Y, Wang T T ,Zeng H P. Appl. Surf. Sci, 2017,391:404.
[95]
Gavade N L, Babar S B, Kadam A N, Gophane A D ,Garadkar K M. Ind. Eng. Chem. Res., 2017,56(49):14489.
[96]
Yang L, Pillai S ,Green M A. Sci. Rep, 2015,5:11852.
[97]
He W J, Sun Y J, Jiang G M, Huang H W, Zhang X M, Dong F. Appl. Catal . B: Environ., 2018,232:340.
[98]
He W J, Sun Y J, Jiang G M, Li Y H, Zhang X M, Zhang Y X, Zhou Y, Dong F. Appl. Catal . B: Environ., 2018,239; 619.
[99]
Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C ,Zhao J C. Appl. Catal.B:Environ., 2016,194:150.
[100]
Cheng Y H, Lin Y J, Xu J P, He J, Wang T Z, Yu G J, Shao D W, Wang W H, Lu F, Li L, Du X, Wang W C, Liu H ,Zheng R K. Appl. Surf. Sci, 2016,366:120.
[101]
Nie J ,Patrocinio A O T, Hamid S, Sieland F, Sann J, Xia S, Bahnemann D W , Schneider. Phys. Chem. Chem. Phys., 2018,20(7):5264. https://www.ncbi.nlm.nih.gov/pubmed/29400385

doi: 10.1039/c7cp07762a     URL     pmid: 29400385
[102]
Toudert J, Serna R ,Jiménez De Castro M. J. Phys. Chem. C, 2012,116(38):20530.
[103]
Sun Y J, Zhao Z W, Zhang W D, Gao C F, Zhang Y X, Dong F . Colloid Interface Sci., 2017,485:1. https://www.ncbi.nlm.nih.gov/pubmed/27639168

doi: 10.1016/j.jcis.2016.09.018     URL     pmid: 27639168
[104]
Li X W, Zhang W D, Cui W, Sun Y J, Jiang G M, Zhang Y X, Huang H W, Dong F. Appl. Catal . B: Environ., 2018,221:482.
[105]
Wang H, Zhang W D, Li X W, Li J Y, Cen W L, Li Q Y, Dong F. Appl. Catal . B: Environ., 2018,225:218.
[106]
Yang F, Zhu X M, Fang J Z, Chen D D, Feng W H ,Fang Z Q. Ceram. Int, 2018,44(6):6918.
[107]
Chen D D, Wu S X, Fang J Z, Lu S Y, Zhou G Y, Feng W H, Yang F, Chen Y ,Fang Z Q. Sep. Purif. Technol, 2018,193:232.
[108]
Hu J L, Chen L, Lian Z C, Cao M, Li H J, Sun W B, Tong N L, Zeng H B . J. Phys. Chem. C, 2012,116(29):15584.
[109]
Ahmadivand A ,Golmohammadi S. Opt. Laser Technol, 2015,66:9.
[110]
Ghori M Z, Veziroglu S, Hinz A, Shurtleff B B, Polonskyi O, Strunskus T, Adam J, Faupel F ,Aktas O C. ACS Appl. Nano Mater, 2018, DOI: 10.1021/acsanm.8b00853.
[111]
Liu Y, Liu M X, Swihart M T . J. Phys. Chem. C, 2017,121(25):13435.
[112]
Lin R, Wan J W, Xiong Y, Wu K L, Cheong W C, Zhou G, Wang D S, Peng Q, Chen C, Li Y D . Am. Chem. Soc., 2018,140(29):9078. https://www.ncbi.nlm.nih.gov/pubmed/29979871

doi: 10.1021/jacs.8b05293     URL     pmid: 29979871
[113]
Song G S, Shen J, Jiang F R, Hu R G, Li W Y, An L, Zou R J, Chen Z G, Qin Z Y ,Hu J Q. ACS Appl Mater Interfaces, 2014,6(6):3915.
[114]
Gordon T R, Paik T, Klein D R, Naik G V, Caglayan H, Boltasseva A ,Murray C B. Nano Lett, 2013,13(6):2857.
[115]
Naik G V, Liu J J, Kildishev A V, Shalaev V M ,Boltasseva A. Proc. Natl. Acad. Sci. U. S A., 2012,109(23):8834.
[116]
Kriegel I, Jiang C, Rodríguezfernández J, Schaller R D, Talapin D V, Da C E, Feldmann J . Am. Chem. Soc., 2012,134(3):1583. https://www.ncbi.nlm.nih.gov/pubmed/22148506

doi: 10.1021/ja207798q     URL     pmid: 22148506
[117]
Ren K, Yin P F, Zhou Y Z, Cao X Z, Dong C K, Cui L, Liu H, Du X W . Small, 2017,13(36):1700867.
[118]
Zhu D X, Tang A W, Kong Q H, Zeng B, Yang C H, Teng F . J. Phys. Chem. C, 2017,121(29):15922.
[119]
Shu Q W, Yang M J . Alloys Compd., 2016,660:361.
[120]
Van Der Stam W, Berends A C, Rabouw FT, Willhammar T, Ke X, Meeldijk J D, Bals S, De Mello Donega C . Chem. Mater., 2015,27(2):621.
[121]
Lee S, Baek S, Park J P, Park J H, Hwang D Y, Kwak S K ,Kim S W. Chem. Mater, 2016,28(10):3337.
[122]
Maiti P S, Ganai A K, Bar-Ziv R, Enyashin A N, Houben L ,Bar Sadan M. Chem. Mater, 2018,30(14):4489.
[123]
Niezgoda J S, Yap E, Keene J D, Mcbride J R ,Rosenthal S J. Nano Lett, 2014,14(6):3262.
[124]
Su Z H, Sun K W, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X . Mater. Chem., 2012,22(32):16346.
[125]
Li Y W, Ling W D, Han Q F, Kim T W, Shi W Z . Alloys Compd., 2015,633:347.
[126]
Lu X T, Zhuang Z B, Peng Q ,Li Y D . Chem. Commun, 2011,47(11):3141.
[127]
Li M, Zhou W-H, Guo J, Zhou Y L, Hou Z L, Jiao J, Zhou Z J, Du Z L, Wu S X . J. Phys. Chem. C, 2012,116(50):26507.
[128]
Lou Z Z, Gu Q, Xu L, Liao Y S, Xue C . Chem.-Asian J., 2015,10(6):1291.
[129]
Lou Z Z, Xue C . CrystEngComm, 2016,18(43):8406.
[130]
Pan L, Zhang J W, Jia X, Ma Y H, Zhang X W, Wang L ,Zou J J. Chin. J. Catal, 2017,38(2):253.
[131]
Lou Z Z, Zhu M S, Yang X G, Zhang Y, Whangbo M H, Li B J ,Huang B B. Appl. Catal. B: Environ., 2018,226:10.
[132]
Tan X J, Wang L Z, Cheng C, Yan X F, Shen B ,Zhang J L. Chem. Commun, 2016,52(14):2893.
[133]
Cheng H F, Kamegawa T, Mori K, Yamashita H . Angew. Chem 2014,126(11):2954.
[134]
Yin H B, Kuwahara Y, Mori K, Cheng H F, Wen M C, Yamashita H . J. Mater. Chem. A, 2017,5(19):8946.
[135]
Greenberg B L, Ganguly S, Held J T, Kramer N J, Mkhoyan K A, Aydil E S ,Kortshagen U R. Nano Lett, 2015,15(12):8162.
[136]
Cheng H F, Wen M C, Ma X C, Kuwahara Y, Mori K, Dai Y, Huang B B, Yamashita H . Am. Chem. Soc., 2016,138(29):9316. https://www.ncbi.nlm.nih.gov/pubmed/27384437

doi: 10.1021/jacs.6b05396     URL     pmid: 27384437
[137]
Milla M J, Barho F, González-Posada F, Cerutti L, Bomers M, Rodriguez J B, Tournié E, Taliercio T . Nanotechnology, 2016,27(42):425201.
[138]
Chen L, Sun H H, Zhao Y J, Zhang Y, Wang Y X, Liu Y, Zhang X, Jiang Y H, Hua Z ,Yang J H. RSC Adv, 2017,7(27):16553.
[139]
Himstedt R, Rusch P, Hinrichs D, Kodanek T, Lauth J, Kinge S ,Siebbeles L D A, Dorfs D . Chem. Mater., 2017,29(17):7371.
[140]
Wang Z L, Quan X J, Zhang Z M, Cheng P . Quant. Spectrosc. Radiat. Transf., 2018,205:291.
[141]
Wang H J, Yang K H, Hsu S C, Huang M H . Nanoscale, 2016,8(2):965.
[142]
Ghodselahi T, Vesaghi M A . Physica B, 2011,406(13):2678.
[143]
Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A ,Han M Y. Adv. Mater, 2012,24(17):2310.
[144]
Yao G Y, Liu Q L, Zhao Z Y . Catalysts, 2018,8(6):236.
[145]
Takahata R, Yamazoe S, Koyasu K, Imura K, Tsukuda T . Am. Chem. Soc., 2018,140(21):6640. https://www.ncbi.nlm.nih.gov/pubmed/29694041

doi: 10.1021/jacs.8b02884     URL     pmid: 29694041
[146]
Mu H W, Lv J W, Liu C, Sun T, Chu P K ,Zhang J P. Opt. Commun, 2017,402:216.
[147]
Han C, Quan Q, Chen H M, Sun Y, Xu Y J . Small, 2017,13(14):1602947.
[148]
Hong J W, Wi D H, Lee S U, Han S W . Am. Chem. Soc., 2016,138(48):15766. https://www.ncbi.nlm.nih.gov/pubmed/27933998

doi: 10.1021/jacs.6b10288     URL     pmid: 27933998
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[13] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[14] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[15] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.