English
新闻公告
More
化学进展 2005, Vol. 17 Issue (05): 905-910 前一篇   后一篇

• 综述与评论 •

蛋白质变性机理与变性时的热力学参数研究进展*

卢雁**;李向荣   

  1. 河南师范大学化学与环境科学学院 新乡 453007
  • 收稿日期:2004-09-01 修回日期:2005-01-01 出版日期:2005-09-24 发布日期:2005-09-24
  • 通讯作者: 卢雁

Progress in Study of Protein Denaturation and Thermodynamic Parameters of Denaturation

Lu Yan**;Li Xiangrong   

  1. College of Chemistry and Environmental Science, Henan Normal University,Xinxiang 453007,China
  • Received:2004-09-01 Revised:2005-01-01 Online:2005-09-24 Published:2005-09-24
  • Contact: Lu Yan
生物大分子是近年来生命科学的研究热点和难点之一,而对蛋白质变性的研究有助于深刻揭示生命现象的机理.利用光谱学和热力学可以分别从微观和宏观角度对蛋白质变性进行研究,并由此得到表征蛋白质变性的热力学参数.这对深入了解蛋白质的折叠与伸展、变性机理、结构稳定性及生命体的新陈代谢等问题具有很大意义.近年来,国内外学者在此方面做了大量的工作,主要涉及蛋白质在水溶液中的变性机理、在有变性剂存在下水溶液中的变性机理及在含有其它物质水溶液中的变性机理.用来表征蛋白质变性的热力学参数有热容、变性自由能、变性焓和变性熵等.本文对这些研究进行了概述.
The study of biological macromolecules has been one of the popular and difficult research area in liie science in recent years. The study of protein denaturation is conductive to reveal the mechanism of living phenomenon. Using the methods of spectroscopy and thermodynamics, one can study the problems of protein denaturation from the microscopic and macroscopic aspects respectively. The thermodynamic parameters which manifest the protein denaturation can be obtained in the study. All the studies are significant to understand more deeply and precisely the folding and unfolding, the stability and denaturation of proteins and the metabolism in living systems. In recent years, much hard work has been done by scholars from all over the world. These work has mainly involved the denaturation mechanism of proteins in water, in the solution with denaturant and in the solution with other matters. The thermodynamic parameters, which be used to manifest the protein denaluration, are heat capacity, Gibbs free energy, enthalpy and entropy. The recent progress in study of protein denaturation is reviewed.

中图分类号: 

()

[ 1 ] Blackburn G M, Lilley T H , Walmsley E. J . Chem. Soc. ,Chem. Commun. , 1980 , 22 : 1091 —1093
[ 2 ] Savage J J , Wood R H. J . Solu. Chem. , 1976 , 5 (10) : 733 —750
[ 3 ] 卢雁(Lu Y) , 徐全清(Xu Q Q) , 李向荣(Li X R) . 化学进展(Progress in Chemistry) , 2004 , 16 (3) : 365 —369
[ 4 ] Murphy K P , Giull S J . J . Mol . Biol . , 1991 , 222 : 699 —709
[ 5 ] Haynie D T , Freire E. Anal . Biochem. , 1994 , 216 (1) : 33 —41
[ 6 ] Calavia M C , Burgos J . J . Dairy Sci . , 1998 , 81 (10) : 2572 —2579
[ 7 ] Cobos E S , Filimonov V V , Gàlvez A , et al . FEBS Letters ,2001 , 505 : 379 —382
[ 8 ] PicóG A. International Journal of Biological Macromolecules ,1997 , 20 : 63 —73
[ 9 ] Ganesh C , Aseema N S , Swaminathan C P , et al . Biochemistry ,1997 , 36 : 5020 —5028
[10] Burova T V , Grinberg N V , Visschers R W, et al . Eur. J .Biochem. , 2002 , 269 : 3958 —3968
[11] Grinbery N V , Burova T V , Haertle T , et al . Journal of Biotechnology , 2000 , 79 : 269 —280
[12] Salvetti G, Tombari E , Mikheeva L. J . Phys. Chem. B , 2002 ,106 : 6081 —6087
[13] Cinelli S , Onori G, Santucci A. J . Phys. Chem. B , 1997 , 101 :8029 —8034
[14] Onori G, Passeri S , Cipiciani A. J . Phys. Chem. , 1989 , 93(10) : 4306 —4310
[15] Sirotkin V A , Borisover M D , Solomonov B N. Biophys. Chem. ,1997 , 69 (2/3) : 239 —248
[16] Tanaka S , Oda Y, Ataka M, et al . Biopolymers , 2001 , 59 :370 —379
[17] Adeishvili K, Khoshtariya D , Getashvili G, et al . Bulletin of the Georgian Academy of Sciences , 1997 , 156 (3) : 465 —467
[18] Gringerg V Y, Grinberg N V , Mashkevich A Y, et al . Food Hydrocolloids , 2002 , 16 (4) : 333 —343
[19] Farruggia B , Pico G A. International Journal of Biological Macromolecules , 1999 , 26 : 317 —323
[20] Wetlaufer D B , Malik S K, Stoller L , et al . J . Am. Chem.Soc. , 1964 , 86 : 508 —514
[21] Vanzi F , Madam B , Sharp K. J . Am. Chem. Soc. , 1998 , 120 :10748 —10753
[22] Qin Z , Rottinghaus H , Susan M, et al . Proteins : Struct . Funct .Genet . , 1998 , 31 (2) : 107 —115
[23] Zdenka K, Savo L , Natase P. Acta Chim. Slov. , 1994 , 41(3) :279 —294
[24] Brian K, Raleigh D P. Protein Sci . , 1998 , 7 (11) : 2405 —2412
[25] Tanford C. Adv. Protein Chem. , 1968 , 23 : 121 —282
[26] Aune K C , Tanford C. Biochemistry , 1969 , 8 : 4586 —4590
[27] Sasahara K, Demura M, Nitta K. Biochemistry , 2000 , 39 :6475 —6482
[28] Shah D , Tohnston T P , Mitra A K. International Journal of Pharmaceutics , 1998 , 169 : 1 —14
[29] 王镜岩(Wang J Y) , 朱圣庚(Zhu S G) , 徐长法(Xu C F) .生物化学(Biochemistry) , 第三版(3rd ed. ) . 北京:高等教育出版社(Beijing : Higher Education Press) , 2002. 198 —234
[30] Deshpande R A , Khan M I , Shankar V. Biochimica Biophysica Acta , 2003 , 1648 : 184 —194
[31] Pace C N. Trends Biochem. Sci . , 1990 , 15 : 14 —17
[32] Pace C N. Methods Enzymol . , 1986 , 131 : 266 —280
[33] Sheshadri S , Lingaraju G M, Varadavajan R. Protein Sci . , 1999 ,8 (8) : 1689 —1695
[34] Kamen D E , Griko Y, Woody R W. Biochemistry , 2000 , 39 :15932 —15943
[35] Privalov P L , Kechinashvii N N. J . Mol . Biol . , 1974 , 86 :665 —684
[36] Pace C N , Shirley B A , Thomson J A. In Protien Structure ———A Practical Approach ( ed. Creighton T E) . Oxford : IRL Press ,1990. 311 —330
[37] Chilom G, Chilom O , Telea C , et al . Revue Roumaine de Chimie , 2000 , 45 (11) : 989 —993
[38] Bae S J , Sturtevant J M. Biophysical Chemistry , 1995 , 55 :247 —252
[39] Boulaich M C , Parady M A , Sanchez R , et al . Biotechnol . ,1998 , 15 : 247 —250
[40] Natasa P , Nina L , Miha O , et al . Acta Chim. Slov. , 1999 , 46(3) : 315 —322
[41] Natasa P , Nina P , Miha O , et al . Protein Sci . , 1999 , 8 (4) :832 —840
[42] Cobos E S , Filimonov V V , Galvez A , et al . Biochimica et Biophysica Acta , 2002 , 1598 : 98 —107
[43] Moosavi M A A , Bordbar A K, Taleshi A A , et al . Int . J .Biochem. Cell Biol . , 1996 , 28 : 991 —998
[44] Kelley D , McClements D J . Food Hydrocolloids , 2003 , 17 : 73 —85
[45] Kovrigin E L , Potekhin S A. Biophy. Chem. , 2000 , 83 : 45 —49
[46] Aboluwoye C O , Gadzekpo V P Y, Nsiah F , et al . Scientia Iranica , 2002 , 9 (2) : 109 —115

[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[4] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[5] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[6] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[7] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[8] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[9] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[10] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[11] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[12] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[13] 石婷, 陈铭, 陈雄平, 汪汲涛, 万锕俊, 赵一雷. 蛋白质巯基亚硝基化分子机制及其疾病相关性[J]. 化学进展, 2015, 27(5): 594-600.
[14] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[15] 曹亚, 朱小立, 赵婧, 李昊, 李根喜. 肿瘤标志蛋白的电化学分析[J]. 化学进展, 2015, 27(1): 1-10.