English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1198-1212 DOI: 10.7536/PC150127 前一篇   后一篇

• 综述与评论 •

两性离子聚合物的抗蛋白质吸附机理及其应用

慈吉良1,2, 康宏亮2*, 刘晨光1*, 贺爱华1, 刘瑞刚2*   

  1. 1. 青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 青岛 266042;
    2. 中国科学院化学研究所 北京分子科学国家实验室 高分子物理与化学国家重点实验室 北京 100190
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 康宏亮, 刘晨光, 刘瑞刚 E-mail:hlkang@iccas.ac.cn;liuchenguang@qust.edu.cn;rgliu@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 21174150, 51003108)资助

Protein Resistance Adsorption Mechanism and Applications of Zwitterionic Polymers

Ci Jiliang1,2, Kang Hongliang2*, Liu Chenguang1*, He Aihua1, Liu Ruigang2*   

  1. 1. Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 26604;
    2. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174150, 51003108).
两性离子聚合物是一类同时带有阴、阳离子基团的聚合物。依据分子结构,它主要包括磷酰胆碱型、磺基甜菜碱型、羧基甜菜碱型以及混合型两性离子聚合物等。两性离子聚合物溶液性质可以通过调节溶液的pH值来实现近似阳离子或阴离子聚电解质。两性离子聚合物又具有特殊的“反聚电解质效应”。另外,两性离子聚合物还具有极强的亲水性、优良的热和化学稳定性、优异的生物相容性以及良好的抗污染性能等特性。本文着重介绍了两性离子聚合在抗蛋白质吸附机理的研究进展,同时针对近年来两性离子聚合物在抗污染材料、药物及基因的运输载体、物质检测与分离材料等领域的应用进行了简要的概述。并且,就两性离子聚合物在这几个应用领域的发展前景进行了展望。
Zwitterionic polymers have both anion and cation groups in one molecular chain. They include several types of polymers such as phosphorylcholine-, sulphobetaine-, carboxyl betaine-, and mixed-charge polymer, according to the different macromolecular structures. They can be cationic or anionic polyelectrolyte by adjusting the pH values in aqueous solutions. They also have a particular anti-polyelectrolyte behavior. Moreover, they have been endowed with lots of other excellent properties, such as strong hydrophilicity, good thermo and chemical stabilities, excellent biocompatibility, and antifouling property. Various zwitterionic polymer materials have been successfully applied in many fields. In this review, the recent progress in antifouling materials, drug delivery carries, and detection and separation materials are summarized. Especially, the developments in the mechanism of protein resistance adsorption are highlighted. The hydration of zwitterionic polymers plays an important role in resisting proteins adsorption, which dominatingly depends on the chemical structures of zwitterionic polymers, such as polymer density, cationic and anionic species and their space length, and charge arrangement. Just based on the properties of protein resistance adsorption and polyelectrolyte, zwitterionic polymers are also used as a block in copolymers or gels to prepare nanocarriers for drug delivery. In preparation of detection and separation materials, the research progress of polymer monolithic columns are particularly summarized, for their excellent stability for resisting a long-term solvent washing and high temperature. In addition, the development perspectives of zwitterionic polymers are also discussed.

Contents
1 Introduction
2 Nonfouling mechanisms of zwitterionic polymers
3 Applications of zwitterionic polymers
3.1 Antifouling materials
3.2 Drug delivery nanocarriers
3.3 Detection and separation materials
3.4 Other applications
4 Conclusion and outlook

中图分类号: 

()
[1] Lowe A B, McCormick C L. Chem. Rev., 2002, 102: 4177.
[2] 毛程(Mao C), 丁伟(Ding W), 于涛(Yu T), 曲广淼(Qu G M). 钻井液与完井液(Drilling Fluid & Completion Fluid), 2011, 28(5): 5.
[3] 丁伟(Ding W), 毛程(Mao C), 韦兆水(Wei Z S), 李明(Li M), 于涛(Yu T), 曲广淼(Qu G M). 应用化学(Chinese Journal of Applied Chemistry), 2011, 28(5): 555.
[4] 何晓燕(He X Y), 周文瑞(Zhou W R), 徐晓君(Xu X J), 杨武(Yang W). 化学进展(Progress in Chemistry), 2013, 25(6): 1023.
[5] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2177.
[6] 李倩(Li Q), 田野(Tian Y), 王晓琳(Wang X L). 高分子通报(Polymer Bulletin), 2012,(3): 1.
[7] Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. J. Biomed. Mater. Res., 1992, 26: 1543.
[8] Chen S F, Zheng J, Li L, Jiang S Y. J. Am. Chem. Soc., 2005, 127: 14473.
[9] Zheng J, Li L, Tsao H K, Sheng Y J, Chen S F, Jiang S Y. Biophys. J., 2005, 89: 158.
[10] He Y, Chang Y, Hower J C, Zheng J, Chen S F, Jiang S Y. Phys. Chem. Chem. Phys., 2008, 10: 5539.
[11] He Y, Hower J, Chen S F, Bernards M T, Chang Y, Jiang S Y. Langmuir, 2008, 24: 10358.
[12] Hower J C, He Y, Jiang S Y. J. Chem. Phys., 2008, 129: 225.
[13] Hower J C, Bernards M T, Chen S F, Tsao H K, Sheng Y J, Jiang S Y. J. Phys. Chem. B, 2008, 113: 197.
[14] Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Langmuir, 2001, 17: 6336.
[15] Chapman R G, Ostuni E, Yan L, Whitesides G M. Langmuir, 2000, 16: 6927.
[16] Holmlin R E, Chen X X, Chapman R G, Takayama S, Whitesides G M. Langmuir, 2001, 17: 2841.
[17] Shao Q, Mi L, Han X, Bai T, Liu S, Li Y, Jiang S Y. J. Phys. Chem. B, 2014, 118: 6956.
[18] Shao Q, He Y, White A D, Jiang S Y. J. Phys. Chem. B, 2010, 114: 16625.
[19] Shao Q, Jiang S Y. J. Phys. Chem. B, 2013, 117: 1357.
[20] Shao Q, Jiang S Y. J. Phys. Chem. B, 2014, 118: 7630.
[21] Liu X S, Huang H Y, Jin Q, Ji J. Langmuir, 2011, 27: 5242.
[22] Chen S F, Liu L Y, Jiang S Y. Langmuir, 2006, 22: 2418.
[23] Feng W, Zhu S P, Ishihara K, Brash J L. Langmuir, 2005, 21: 5980.
[24] Feng W, Brash J L, Zhu S P. Biomaterials, 2006, 27: 847.
[25] Mi L, Jiang S Y. Angew. Chem. Int. Ed., 2014, 53: 1746.
[26] Zhang Z, Zhang M, Chen S F, Horbett T A, Ratner B D, Jiang S Y. Biomaterials, 2008, 29: 4285.
[27] Shao Q, He Y, White A D, Jiang S Y. J. Chem. Phys., 2012, 136: 698.
[28] Vaisocherová H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S Y. Anal. Chem., 2008, 80: 7894.
[29] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J. Membr. Sci., 2010, 362: 255.
[30] Yang W, Zhang L, Wang S, White A D, Jiang S Y. Biomaterials, 2009, 30: 5617.
[31] Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. Langmuir, 2008, 24: 8772.
[32] Carr L R, Xue H, Jiang S Y. Biomaterials, 2011, 32: 961.
[33] Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S Y. Biomaterials, 2007, 28: 4192.
[34] Jiang S Y, Cao Z. Adv. Mater., 2010, 22: 920.
[35] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37: 1783.
[36] Krause J E, Brault N D, Li Y, Xue H, Zhou Y, Jiang S Y. Macromolecules, 2011, 44: 9213.
[37] Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S Y. Biomaterials, 2010, 31: 1486.
[38] Zhao J, Shi Q, Luan S, Song L, Yang H, Shi H, Jin J, Li X, Yin J, Stagnaro P. J. Membr. Sci., 2011, 369: 5.
[39] Mi L, Xue H, Li Y, Jiang S Y. Adv. Funct. Mater., 2011, 21: 4028.
[40] Sundaram H S, Ella-Menye J-R, Brault N D, Shao Q, Jiang S Y. Chem. Sci., 2014, 5: 200.
[41] Chang Y, Shih Y J, Lai C J, Kung H H, Jiang S Y. Adv. Funct. Mater., 2013, 23: 1100.
[42] Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner B D, Jiang S Y. Nat. Biotechnol., 2013, 31: 553.
[43] Chen S F, Jiang S Y. Adv. Mater., 2008, 20: 335.
[44] Li G, Cheng G, Xue H, Chen S F, Zhang F B, Jiang S Y. Biomaterials, 2008, 29: 4592.
[45] Cho W K, Kong B, Choi I S. Langmuir, 2007, 23: 5678.
[46] Yang R, Xu J, Ozaydin-Ince G, Wong S Y, Gleason K K. Chem. Mater., 2011, 23: 1263.
[47] Aldred N, Clare A S. Biofouling, 2008, 24: 351.
[48] Cao Z, Yu Q, Xue H, Cheng G, Jiang S. Angew. Chem., 2010, 122: 3859.
[49] Chen X, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20: 2331.
[50] Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv. Mater., 2012, 24: 5476.
[51] Jia G, Cao Z, Xue H, Xu Y, Jiang S Y. Langmuir, 2009, 25: 3196.
[52] Zhang L, Xue H, Cao Z, Keefe A, Wang J, Jiang S Y. Biomaterials, 2011, 32: 4604.
[53] Yang W, Liu S, Bai T, Keefe A J, Zhang L, Ella-Menye J-R, Li Y, Jiang S Y. Nano Today, 2014, 9: 10.
[54] Wang Z, Ma G, Zhang J, Lin W, Ji F, Bernards M T, Chen S. Langmuir, 2014, 30: 3764.
[55] Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S I. J. Chromatogr. A, 2006, 1113: 177.
[56] Hu W, Haraguchi H. Anal. Chem., 1994, 66: 765.
[57] Heller D N, Nochetto C B. Rapid Commun. Mass Spectrom., 2008, 22: 3624.
[58] Jiang W, Fischer G, Girmay Y, Irgum K. J. Chromatogr. A, 2006, 1127: 82.
[59] An Q F, Sun W D, Zhao Q, Ji Y L, Gao C J. J. Membr. Sci., 2013, 431: 171.
[60] Malerod H, Rogeberg M, Tanaka N, Greibrokk T, Lundanes E. J. Chromatogr. A, 2013, 1317: 129.
[61] Yang R, Jang H, Stocker R, Gleason K K. Adv. Mater., 2014, 26: 1711.
[62] Latour, R A. J. Biomed. Mater. Res. A, 2006, 78A: 843.
[63] Zhang Z, Chen S F, Chang Y, Jiang S Y. J. Phys. Chem. B, 2006, 110: 10799.
[64] Metzke M, Bai J Z, Guan Z. J. Am. Chem. Soc., 2003, 125: 7760.
[65] Schlenoff J B. Langmuir, 2014, 30: 9625.
[66] Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U I, Nakamura K, Kawaguchi H. Nat. Mater., 2004, 3: 829.
[67] Cheng G, Xue H, Zhang Z, Chen S F, Jiang S Y. Angew. Chem. Int. Ed., 2008, 47 (46): 8831.
[68] Cao Z, Brault N, Xue H, Keefe A, Jiang S Y. Angew. Chem. Int. Ed., 2011, 50: 6102.
[69] Cao Z, Mi L, Mendiola J, Ella-Menye J-R, Zhang L, Xue H, Jiang S Y. Angew. Chem. Int. Ed., 2012, 51: 2602.
[70] Sundaram H S, Ella-Menye J-R, Brault N D, Shao Q, Jiang S Y. Chem. Sci., 2014, 5: 200.
[71] Kirk J T, Brault N D, Baehr-Jones T, Hochberg M, Jiang S Y, Ratner D M. Biosens. Bioelectron., 2013, 42: 100.
[72] Nguyen A T, Baggerman J, Paulusse J M J, van Rijn C J M, Zuilhof H. Langmuir, 2011, 27: 2587.
[73] Yang J, Lv J, Behl M, Lendlein A, Yang D, Zhang L, Shi C, Guo J, Feng Y. Macromol. Biosci., 2013, 13: 1681.
[74] Chien H W, Tsai C C, Tsai W B, Wang M J, Kuo W H, Wei T C, Huang S T. Colloid. Surface. B, 2013, 107: 152.
[75] Liu Q, Singh A, Liu L. Biomacromolecules, 2012, 14: 226.
[76] Alswieleh A M, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, Xia S, Ducker R E, El Zubir O, Cartron M L, Hunter C N, Leggett G J, Armes S P. J. Am. Chem. Soc., 2014, 136: 9404.
[77] Tyrrell Z L, Shen Y, Radosz M. Prog. Polym. Sci., 2010, 35: 1128.
[78] R?sler A, Vandermeulen G W M, Klok H A. Adv. Drug Deliver. Rev., 2012, 64, Supplement: 270.
[79] Chiang Y C, Chang Y, Chuang C J, Ruaan R C. J. Membr. Sci., 2012, 389: 76.
[80] Xu J P, Ji J, Chen W D, Shen J C. J. Control. Release, 2005, 107: 502.
[81] Yusa S i, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Biomacromolecules, 2005, 6: 663.
[82] Du J, Tang Y, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127: 17982.
[83] Shen L, Du J Z, Armes S P, Liu S Y. Langmuir, 2008, 24: 10019.
[84] Yu B, Lowe A B, Ishihara K. Biomacromolecules, 2009, 10: 950.
[85] Licciardi M, Tang Y, Billingham N C, Armes S P, Lewis A L. Biomacromolecules, 2005, 6: 1085.
[86] Wen Y, Zhang Z, Li J. Adv. Funct. Mater., 2014, 24: 3874.
[87] Zhang J, Wang Z, Lin W, Chen S F. Biomaterials, 2014, 35: 7909.
[88] 张景迅(Zhang J X), 魏雨(Wei Y), 范娟娟(Fan J J), 蔡素燕(Cai S Y), 鲁浩杰(Lu H J). 应用化工(Applied Chemical Industry), 2014, 43(9): 1601.
[89] Zhang L, Sinclair A, Cao Z, Ella-Menye J-R, Xu X, Carr L R, Pun S H, Jiang S Y. Small, 2013, 9: 3439.
[90] Zhu Y, Sundaram H S, Liu S, Zhang L, Xu X, Yu Q, Xu J, Jiang S Y. Biomacromolecules, 2014, 15: 1845.
[91] Cao J, Xie X, Lu A, He B, Chen Y, Gu Z, Luo X. Biomaterials, 2014, 35: 4517.
[92] He C H, Hu Y P, Yin L C, Tang C, Yin C H. Biomaterials, 2010, 31: 3657.
[93] Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S Y. Langmuir, 2010, 26: 6883.
[94] Wang D, Wu T, Wan X J, Wang X F, Liu S Y. Langmuir, 2007, 23: 11866.
[95] Obata Y, Tajima S, Takeoka S. J. Control. Release, 2010, 142: 267.
[96] Mo R, Sun Q, Li N, Zhang C. Biomaterials, 2013, 34: 2773.
[97] Stach H. Angew. Chem., 1951, 63: 263.
[98] Small H, Stevens T S, Bauman W C. Anal. Chem., 1975, 47: 1801.
[99] Haddad P R, Nesterenko P N, Buchberger W. J. Chromatogr. A, 2008, 1184: 456.
[100] Okada T. J. Phys. Chem. B, 1997, 101: 7814.
[101] Okada T. Anal. Chem., 1998, 70: 1692.
[102] Okada T. Anal. Chim. Acta, 2005, 540: 139.
[103] Hu W, Takeuchi T, Haraguchi H. Anal. Chem., 1993, 65: 2204.
[104] Hu W, Haddad P R, Hasebe K, Tanaka K, Tong P, Khoo C. Anal. Chem., 1999, 71: 1617.
[105] Glenn K M, Lucy C A. Analyst, 2008, 133: 1581.
[106] Jiang W, Irgum K. Anal. Chem., 2001, 73: 1993.
[107] Viklund C, Irgum K. Macromolecules, 2000, 33: 2539.
[108] Jiang W, Irgum K. Anal. Chem., 2002, 74: 4682.
[109] Jiang W, Irgum K. Anal. Chem., 1998, 71: 333.
[110] Jandera P, Staňková M, Hájek T. J. Sep. Sci., 2013, 36: 2430.
[111] Qiao L, Dou A, Shi X, Li H, Shan Y, Lu X, Xu G. J. Chromatogr. A, 2013, 1286: 137.
[112] Viklund C, Sj?gren A, Irgum K, Nes I. Anal. Chem., 2000, 73: 444.
[113] Jiang W, Awasum J N, Irgum K. Anal. Chem., 2003, 75: 2768.
[114] Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2009, 131: 2070.
[115] Calvo A, Yameen B, Williams F J, Soler-Illia G J A A, Azzaroni O. J. Am. Chem. Soc., 2009, 131: 10866.
[116] An Q F, Ji Y L, Hung W S, Lee K R, Gao C J. Macromolecules, 2013, 46: 2228.
[117] Liu S Y, Armes S P. Angew. Chem. Int. Ed., 2002, 41: 1413.
[118] Nilsson K P R, Inganas O. Nat. Mater., 2003, 2: 419.
[119] Kim G, Yong Y, Kang H J, Park K, Kim S I, Lee M, Huh N. Biomaterials, 2014, 35: 294.
[120] Zhang L M, Tan Y B, Li Z M. Carbohydr. Polym., 2001, 44: 255.
[121] Hu Z, Zhang L. J. Macromol. Sci. A, 2002, 39: 419.
[122] Foster E L, Xue Z, Roach C M, Larsen E S, Bielawski C W, Johnston K P. ACS Macro Lett., 2014, 3: 867.
[123] Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S. Biomaterials, 2014, 35: 3926.
[124] Liu P, Lu W, Wang W J, Li B G, Zhu S. Langmuir, 2014, 30: 10248.
[1] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[2] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[3] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.