English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1824-1833 DOI: 10.7536/PC160908 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

电化学生物传感应用于体外检测的研究

田亮, 姚琛, 王怡红*   

  1. 东南大学化学化工学院 南京 211189
  • 收稿日期:2016-09-01 修回日期:2016-11-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 王怡红,e-mail:yihongwang@seu.edu.cn E-mail:yihongwang@seu.edu.cn
  • 基金资助:
    国家自然科学基金(No.81571812)和江苏高校优势学科建设工程资助项目(No.1107047002)资助

Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic

Tian Liang, Yao Chen, Wang Yihong*   

  1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
  • Received:2016-09-01 Revised:2016-11-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 81571812) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.1107047002)
电化学生物传感技术以它独特的检测、分析方法以及在临床检测中潜在的应用,近年来受到研究者越来越多的关注。癌症生物标志物的早期检测能够使得患者在癌症发展至晚期前得到治疗,增加患者存活率。此外,生物标志物能够用于确定疾病的复发,以及患者在接受化疗、放疗和外科治疗之后的后续评估。本文主要论述了现有癌症生物标志物检测的设备和方法,并对这些方法的优点和不足作了简单的评述。另外,介绍了体外诊断设备的发展现状和电化学传感技术的特点,并对癌症早期的主要生物标志物进行了介绍,以及着重论述了电化学传感技术应用于临床靶向生物标志物检测的研究进展。此外,还展望了电化学生物传感技术未来的研究方向和发展趋势。从目前的的研究来看,电化学传感技术在体外诊断和临床检测癌症生物标志物等方面存在着较大的应用潜质,有望成为生物、医学、环境等领域重要的研究技术。
In recent years, electrochemical biosensor technology has received more and more attention by the virtue of its unique detection, analysis methods and the potential applications in clinical diagnostic. Early detection of cancer biomarkers could diagnose specific diseases timely, and provide treatment for the disease before it develops into its later period to thereby increase survival rate of patients. Furthermore, biomarkers can be used to determine the recurrence of the disease and evaluate the follow-up period after chemotherapy, radiotherapy and surgery. In this paper, we mainly discuss the existing equipment and methods of the cancer biomarkers detection, and briefly comment on the advantages and disadvantages of these methods. In addition, we also introduce the development of in vitro diagnostic devices and the characteristics of electrochemical biosensor technology, and present the major biomarkers in early cancer stage. Furthermore, we also focus on the detection of clinical targeted biomarkers by electrochemical biological sensing technology. The future research direction and development trend of electrochemical biological sensing technology are prospected. According to present researches, electrochemical biological sensing technology possesses great application potential in the areas of in vitro diagnostic and detection of clinical cancer biomarkers. With these features, in vitro diagnostic devices become unique and of great significance, and electrochemical biological sensing technology is expected to be quite important in the field of biology, medicine, environment, and so on.

Contents
1 Introduction
2 Biosensor technology
3 Application of electrochemical biosensor technology
3.1 Electrochemical DNA biosensor
3.2 Electrochemical immunosensor
3.3 Circulating tumor cells (CTCs) electrochemical biosensor
3.4 Glucose electrochemical biosensor
3.5 Hydrogen peroxide electrochemical biosensor
3.6 Electrochemical biosensor for small molecules of metabolite detection
4 Conclusion

中图分类号: 

()
[1] Jin Z, Hildebrandt N. Trends in Biotechnology, 2012, 30:394.
[2] Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. BMC Bioinformatics, 2012, 13:134.
[3] D'Argenio V, Esposito M V, Telese A, Precone V, Starnone F, Nunziato M, Cantirllo P, Iorio M, Evangelista E, D'Aiuto M, Calabrese A, Frisso G, D'Aiuto G, Salvatore F. Clinica Chimica Acta, 2015, 9:221.
[4] Krishnendu S, Agasti S S, Chaekyu K, Li X N, Vincent M R. Chemical Reviews, 2012, 112:2739.
[5] Mph R S, Ms D N M, Phd A J D. Ca-A Cancer Journal for Clinicians, 2010, 60:277.
[6] Kamdje A H N, Etet P F S, Vecchio L, Muller J M, Krampera M, Lukong K E. Cellular Signalling, 2014, 26:2843.
[7] Ward C, Langdon S P, Mullen P, Harris A L, Harrison D J, Supuran C T, Kunkler L H. Cancer Treatment Reviews, 2013, 39:171.
[8] Tothill I E. Seminars in Cell & Developmental Biology, 2009, 20:55.
[9] Apar Kishor G, James L M. Oncologist, 2006, 11:481.
[10] 曹亚(Cao Y), 朱小立(Zhu X L), 赵婧(Zhao J), 李昊(Li H), 李根喜(Li G X). 化学进展(Progress in Chemistry), 2015, 1:1.
[11] Wu J, Fu Z, Yan F, Ju H. Trac Trends in Analytical Chemistry, 2007, 26:679.
[12] Soper S, Brown K, Ellington A, Frazier B, Manero G G, Gau V, Gutman S I, Hayes D F, Korte B, Lander J L, Larson D, Ligler F, Majumdar A, Mascini M, Nolte D, Rosenzweig Z, Wang J, Wilson D. Biosensors & Bioelectronics, 2006, 21:1932.
[13] Lin J H, Ju H X. Biosensors & Bioelectronics, 2005, 20:1461.
[14] Sadik O A, Aluoch A O, Ailing Z. Biosensors & Bioelectronics, 2009, 24:2749.
[15] Nienhuis H H, Gaykema S B M, Timmer-Bosscha H, Jalving M, Brouwers A H, Lub-de Hoohe M N, van der Vegt B, Overmoyer B, de Vries E G E, Schroder C P. Pharmacology & Therapeutics, 2015, 147:63.
[16] Clotilde T. Nature, 2015, 523:161.
[17] Arya S K, Shekhar B. Chemical Reviews, 2011, 111:6783.
[18] Pina T C, Zapata I T, Hernandez F C, Lopez J B, Paricio P P, Hernandez P M. Clinica Chimica Acta, 2001, 305:27.
[19] Song Y, Huang Y Y, Liu X, Zhang X, Ferrari M, Qin L. Trends in Biotechnology, 2014, 32:132.
[20] Lin J, Feng Y, Ju H. Clinica Chimica Acta, 2004, 341:109.
[21] Kim D, Noh H, Park D, Ryu S, Koo J S, Shim Y. Biosensors & Bioelectronics, 2009, 25:456.
[22] Borisov S M, Wolfbeis O S. Chemical Reviews, 2008, 108:423.
[23] 黄露菡(Huang L H),杨瑞龙(Yang R L),郑妍(Zheng Y).广东畜牧兽医科技(Guangdong Journal of Animal & Veterinary Science), 2014, 39:50.
[24] Joseph W. Biosensors & Bioelectronics, 2006, 21:1887.
[25] Wilson M S, Nie W Y. Analytical Chemistry, 2006, 78:6476.
[26] Liu Y, Yuan R, Chai Y, Hong C, Liu K, Guan S. Microchimica Acta, 2009, 167:217.
[27] Li X, Yuan R, Chai Y, Zhang L, Zhuo Y, Zhang Y. Journal of Biotechnology, 2006, 123:356..
[28] Wilson M S. Analytical Chemistry, 2005, 77:1496.
[29] Greenberg A K, Lee M S. Current Opinion in Pulmonary Medicine, 2007, 13:249.
[30] Wang Y C, Hsu H S, Chen T P, Chen J T. Annals of the New York Academy of Sciences, 2006, 1075:179.
[31] Tang D, Yuan R, Chai Y. Biochemical Engineering Journal, 2004, 22:43.
[32] Miao X, Wang W, Kang T, Liu J, Shiu K K, Leung C H, Ma D L. Biosensors & Bioelectronics, 2016, 86:454.
[33] Tang H, Chen J H, Nie L H, Kuang Y F, Yao S Z. Biosensors & Bioelectronics, 2007, 22:1061.
[34] Asawatreratanakul P, Thavarungkul P. Analytica Chimica Acta, 2006, 561:55.
[35] Zhang X, Wu Y, Tu Y, Liu S. Analyst, 2008, 133:485.
[36] Liu Z, Yuan R, Chai Y, Zhuo Y, Hong C, Yang X. Sensors & Actuators B Chemical, 2008, 134:625.
[37] Prabhulkar S, Alwarappan S, Liu G, Li C. Biosensors & Bioelectronics, 2009, 24:3524.
[38] Viswanathan S, Rani C, Anand A, Ho J A. Biosensors & Bioelectronics, 2009, 24:1984.
[39] Fang W, Yang J, Wong D T W. Biosensors & Bioelectronics, 2013, 44C:115.
[40] Hu T, Zhang L, Wen W, Zhang X, Wang S. Biosensors & Bioelectronics, 2016, 77:451.
[41] Zhu W, Qin W, Atasoy U, Sauter E R. BMC Research Notes, 2009, 2:89.
[42] Bartel D P. Cell, 2004, 116:281.
[43] Weber J A, Baxter D H, Shile Z, Huang D Y, Huang K H, Lee M J, Wang K. Clinical Chemistry, 2010, 56:1733.
[44] Kai W, Shile Z, Bruz M, Pamela T, Amy B, Zhiyuan H, Leroy E H, David J G. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:4402.
[45] Economopoulou P, Dimitriadis G, Psyrri A. Cancer Treatment Reviews, 2015, 41:1.
[46] Jorde L B. Medical Genetics. Mosby, 2006. 263.
[47] Wang W T, Fan X J, Xu S H, Davis J J, Luo X L. Biosensors & Bioelectronics, 2015, 71:51.
[48] Rasheed P A, Sandhyarani N. Sensors & Actuators B Chemical, 2014, 204:777.
[49] Liu A, Zhong G, Chen J, Weng S, Huang H, Chen W, Lin L, Lei Y, Fu F, Sun Z, Lin X, Lin J, Yang S. Analytica Chimica Acta, 2013, 767:50.
[50] Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Chemical Society Reviews, 2016, 45:715.
[51] Geim A K, Novoselov K S. Nature Materials, 2007, 6:183.
[52] Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M. Chemical Reviews, 2015, 115:11941.
[53] Zhang J, Wu D Z, Cai SX, Chen M, Xia Y K, Wu F, Chen J H. Biosensors & Bioelectronics, 2016, 75:452.
[54] Wu X Y, Chai Y Q, Yuan R, Su H L, Han J. Analyst, 2013, 138:1060.
[55] Liu L, Xia N, Liu H P, Kang X J, Liu X S, Xue C, He X L. Biosensors & Bioelectronics, 2014, 53:399.
[56] Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Manesh H N. Biosensors & Bioelectronics, 2016, 77:99.
[57] Heneghan H M, Miller N, Lowery A J, Sweeney K J, Newell J, Kerin M J. Annals of Surgery, 2010, 251:499.
[58] Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y. Microchim Acta, 2016, 183:3061.
[59] Chen C, Skog J, Hsu C H, Lessard R T, Balaj L, Wurdinger T, Carter B S, Breakefield X O, Toner M, Irimia D. Lab on A Chip, 2010, 10:505.
[60] Wei F, Liao W, Xu Z, Yang Y, Wong D T, Ho C M. Small, 2009, 5:1784.
[61] Fang W, Yang J, Wong D T W. Biosensors & Bioelectronics, 2013, 44:115.
[62] Wei F, Liao W, Xu Z, Yang Y, Wong D T, Ho C M. Small, 2009, 5:1784.
[63] Ali M A, Mondal K, Singh C, Malhotra B D, Sharma A. Nanoscale, 2015, 7:7234.
[64] Ravalli A, Rocha C G, Yamanaka H, Marrazza G. Bioelectrochemistry, 2015, 106:268.
[65] Pérez W I, Soto Y, Ramirez-Vick J E, Melendez E. Journal of Electroanalytical Chemistry, 2015, 751:49.
[66] Li C X, Qiu X Y, Deng K Q, Hou Z H. Analytical Methods, 2014, 6:9078.
[67] Xu MY, Luo X L, Davis J J. Biosensors & Bioelectronics, 2013, 39:21.
[68] Thiagarajan V, Madhurantakam S, Sethuraman S, Rayappan J B B, Krishnan U M. Journal of Colloid & Interface Science, 2016, 462:334.
[69] Zhu X L, Yang J H, Liu M, Wu Y, Shen Z M, Li G X. Analytica Chimica Acta, 2013, 764:59.
[70] Yan M, Sun G Q, Liu F, Lu J J, Yu J H, Song X R. Analytica Chimica Acta, 2013, 798:33.
[71] Zheng D Y, Zhu X J, Ding X R, Zhu X L, Yin Y M, Li G X. Talanta, 2013, 105:187.
[72] Zheng T T, Zhang Q F, Feng S, Zhu J J, Wang Q, Wang H. J. Am. Chem. Soc., 2014, 136:2288.
[73] Gu Z G, Yang S P, Li Z J, Sun X L, Wang G L, Fang Y J, Liu J K. Electrochimica Acta, 2011, 56:9162.
[74] Fang Y X, Zhang D, Guo Y, Guo Y M, Chen Q. Sensors and Actuators B:Chemical, 2015, 221:265.
[75] Zhao J, Yan Y L, Zhu L, Li X X, Li G X. Biosensors & Bioelectronics, 2013, 41:815.
[76] Zhu L L, Zhang Y, Xu P C, Wen W J, Li X X, Xu J Q. Biosensors & Bioelectronics, 2016, 80:601.
[77] Azzouzi S, Rotariu L, Benito A M, Maser W K, Ali M B, Bala C. Biosensors & Bioelectronics, 2015, 69:280.
[78] Nesakumar N, Thandavan K, Sethuraman S, Krishnan U M, Rayappan J B B. Journal of Colloid and Interface Science, 2014, 414:90.
[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[5] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[6] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[7] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[8] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[9] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[10] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[13] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[14] 周倩, 李娜, 李坤, 余孝其. DNA中醛基嘧啶的化学检测[J]. 化学进展, 2020, 32(11): 1634-1650.
[15] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.