English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 75-82 DOI: 10.7536/PC161225 前一篇   后一篇

所属专题: 中国化学印记

• 综述 •

类细胞环境下蛋白质结构与功能的NMR研究

徐国华, 李从刚*, 刘买利*   

  1. 中国科学院武汉物理与数学研究所 中国科学院生物磁共振分析重点实验室 波谱与原子分子物理国家重点实验室 生命分析化学协同创新中心 武汉 430071
  • 收稿日期:2016-12-14 修回日期:2017-01-04 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 李从刚, 刘买利 E-mail:conggangli@wipm.ac.cn;ml.liu@wipm.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21075134,21173258,21505152)和国家重点基础研究发展计划(973)项目(No.2013CB910202)资助

NMR Study of Protein Structure and Function in Cell-Like Environment

Guohua Xu, Conggang Li*, Maili Liu*   

  1. Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2016-12-14 Revised:2017-01-04 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21075134, 21173258, 21505152) and the Ministry of Science and Technology of China (No. 2013CB910202).
细胞环境是大多数蛋白质行使其功能的天然环境。在细胞环境中,大分子拥挤、限域、弱相互作用等普遍存在,已经有越来越多的研究表明这种复杂细胞环境会影响蛋白质的结构与功能。因此,在越接近天然的环境中研究蛋白质,越有可能揭示蛋白质功能的本质。蛋白质结构与功能的原位研究已是目前蛋白质科学中的前沿领域。核磁共振波谱技术是研究复杂环境中蛋白质结构与功能最具潜力的手段,它能提供原子分辨的蛋白质结构,动态与相互作用信息。本文总结了我们近几年利用核磁共振技术研究大分子拥挤、限域、以及原核E.coli细胞、非洲爪蟾卵母细胞中蛋白质结构与功能等方面取得的重要进展。
Most proteins function in the cell where macromolecular crowding, confinement and quinary interaction are ubiquitous. More and more researches suggest that the complex cellular environment affects protein's structure and function. Therefore, for protein studies, the closer to native cellular environment, the more likely molecular mechanisms of proteins function could be revealed accurately. In-cell study of protein structure and function has been a frontier topic in protein science. Nuclear magnetic resonance (NMR) spectroscopy is the most promising technique for protein structural and functional assay at atomic level in complex environments. Here, we summarize our recent progress in protein structural and functional studies in macromolecular crowding, confinement, prokaryotic and eukaryotic cells by NMR spectroscopy. Two model proteins, an intrinsic disordered protein α-synuclein and a multi-domain protein calmodulin, are employed to show how macromolecular crowding and confinement affect protein structure and function, respectively. Then in-cell NMR methods, including labeling strategy, cytoplasmic viscosity measurement, quinary interaction quantification are developed to obtain high-quality NMR spectra for facilitating protein structural and functional studies in living cells. Ca2+-induced calmodulin conformational transitions and GB1 protein structural determination in living Xenopus laevis oocytes, are shown here as typical applications of in-cell NMR. Finally, the conclusion and perspective of environmental effects on protein structure and function are presented.

Contents
1 Introduction
2 The effect of macromolecular crowding on protein structure and function
3 The effect of confinement on protein structure and function
4 In vivo NMR study of protein structure and function
4.1 Labeling strategies for in-cell protein NMR study
4.2 The determination of cytoplasmic viscosity and weak protein interactions in living cells
4.3 The observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes
4.4 Direct determination of protein structure in living Xenopus laevis oocytes
5 Conclusion

中图分类号: 

()
[1] Ellis R J. Trends Biochem. Sci., 2001, 26:597.
[2] Ellis R J. Curr. Opin. Struct. Biol., 2001, 11:114.
[3] Minton A P. J. Biol. Chem., 2001, 276:10577.
[4] Monteith W B, Cohen R D, Smith A E, Guzman-Cisneros E, Pielak G J. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:1739.
[5] Smith A E, Zhang Z T, Pielak G J, Li C G. Curr. Opin. Struct. Biol., 2015, 30:7.
[6] Ellis R J, Minton A P. Biol. Chem., 2006, 387:485.
[7] Zhou H X, Rivas G, Minton A P. Annu. Rev. Biophys., 2008, 37:375.
[8] Senske M, Smith A E, Pielak G J. Angew. Chem. Int. Ed., 2016, 55:3586.
[9] Akabayov S R, Akabayov B, Richardson C C, Wagner G. J. Am. Chem. Soc., 2013, 135:10040.
[10] Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, Gruebele M, Cheung M S. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:17586.
[11] Stagg L, Zhang S Q, Cheung M S, Wittung Stafshede P. Proc. Natl. Acad. Sci. U. S. A., 2007, 104:18976.
[12] Tian J H, Garcia A E. J. Am. Chem. Soc., 2011, 133:15157.
[13] Mittal J, Best R B. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:20233.
[14] Li C G, Liu M L. FEBS Lett., 2013, 587:1008.
[15] Li C G, Charlton L M, Lakkavaram A, Seagle C, Wang G F, Young G B, Macdonald J M, Pielak G J. J. Am. Chem. Soc., 2008, 130:6310.
[16] Wang Y Q, Li C G, Pielak G J. J. Am. Chem. Soc., 2010, 132:9392.
[17] Li C G, Wang Y Q, Pielak G J. J. Phys. Chem. B, 2009, 113:13390.
[18] Theillet F X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C G, Crowley P B, Gierasch L, Pielak G J, Elcock A H, Gershenson A, Selenko P. Chem. Rev., 2014, 114:6661.
[19] Miklos A C, Li C G, Sharaf N G, Pielak G J. Biochemistry, 2010, 49:6984.
[20] Xu G, Cheng K, Wu Q, Liu M, Li C. Angew. Chem. Int. Ed., 2017, 56:530.
[21] Bai J, Liu M, Pielak G J, Li C. ChemPhysChem, 2017, 18:55.
[22] Uversky V N. J. Neurochem., 2007, 103:17.
[23] Chin D, Means A R. Trends Cell Biol., 2000, 10:322.
[24] Anthis N J, Doucleff M, Clore G M. J. Am. Chem. Soc., 2011, 133:18966.
[25] Barbato G, Ikura M, Kay L E, Pastor R W, Bax A. Biochemistry, 1992, 31:5269.
[26] Babu C R, Flynn P F, Wand A J. J. Am. Chem. Soc., 2001, 123:2691.
[27] Simorellis A K, Flynn P F. J. Am. Chem. Soc., 2006, 128:9580.
[28] O'Brien E S, Nucci N V, Fuglestad B, Tommos C, Wand A J. J. Biol. Chem., 2015, 290:30879.
[29] Zhou H X. Arch. Biochem. Biophys., 2008, 469:76.
[30] Ye Y S, Liu X L, Chen Y H, Xu G H, Wu Q, Zhang Z T, Yao C D, Liu M L, Li C G. Chem. Eur. J., 2015, 21:8686.
[31] Xu G H, Ye Y S, Liu X L, Cao S F, Wu Q, Cheng K, Liu M L, Pielak G J, Li C G. Biochemistry, 2014, 53:1971.
[32] Li C G, Wang G F, Wang Y Q, Creager Allen R, Lutz E A, Scronce H, Slade K M, Ruf R A S, Mehl R A, Pielak G J. J. Am. Chem. Soc., 2010, 132:321.
[33] Li C G, Pielak G J. J. Am. Chem. Soc., 2009, 131:1368.
[34] Ye Y, Liu X, Zhang Z, Wu Q, Jiang B, Jiang L, Zhang X, Liu M, Pielak G J, Li C. Chem. Eur. J., 2013, 19:12705.
[35] Ye Y S, Liu X L, Xu G H, Liu M L, Li C G. Angew. Chem. Int. Ed., 2015, 54:5328.
[36] Pan B B, Yang F, Ye Y S, Wu Q, Li C G, Huber T, Su X C. Chem. Commun., 2016, 52:10237.
[37] Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith B O, Shirakawa M, Guntert P, Ito Y. Nature, 2009, 458:102.
[38] Muntener T, Haussinger D, Selenko P, Theillet F X. J. Phys. Chem. Lett., 2016, 7:2821.
[39] Schmidt H L F, Sperling L J, Gao Y G, Wylie B J, Boettcher J M, Wilson S R, Rienstra C A. J. Phys. Chem. B, 2007, 111:14362.
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[3] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[4] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[5] 张晓东, 董寒, 王吟, 崔立峰. 有序介孔硅材料主-客体组装及应用研究[J]. 化学进展, 2015, 27(10): 1374-1383.
[6] 邹勇进, 向翠丽, 邱树君, 褚海亮, 孙立贤*, 徐芬. 纳米限域的储氢材料[J]. 化学进展, 2013, 25(01): 115-121.
[7] 李伟, 罗磊, 张淑贞. 应用先进光谱技术研究无机离子的环境界面化学[J]. 化学进展, 2011, 23(12): 2576-2587.
[8] 王志永 施祖进 顾镇南. 物质在纳米限域空间中的新现象*[J]. 化学进展, 2009, 21(11): 2435-2444.