English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2267-2282 DOI: 10.7536/PC220131 前一篇   后一篇

• 综述与评论 •

蛋白质-多糖复合体系在活性物质传递中的应用

陈雅琼1,2, 宋洪东2, 吴懋1, 陆扬1, 管骁2,*()   

  1. 1 上海健康医学院药学院 上海 201318
    2 上海理工大学健康科学与工程学院 上海 200093
  • 收稿日期:2022-01-29 修回日期:2022-04-29 出版日期:2022-10-24 发布日期:2022-06-25
  • 通讯作者: 管骁
  • 基金资助:
    国家自然科学基金项目(32172247)

Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients

Chen Yaqiong1,2, Song Hongdong2, Wu Mao1, Lu Yang1, Guan Xiao2()   

  1. 1 School of Pharmacy, Shanghai University of Medicine & Health Sciences,Shanghai 201318, China
    2 School of Health Sciences and Engineering, University of Shanghai for Science and Technology,Shanghai 200093, China
  • Received:2022-01-29 Revised:2022-04-29 Online:2022-10-24 Published:2022-06-25
  • Contact: Guan Xiao
  • Supported by:
    National Natural Science Foundation of China(32172247)

蛋白质-多糖复合体系作为生物活性物质传递系统的壁材,有着人工合成聚合物或无机物等其他材料不可比拟的多重优势。本文就蛋白质和多糖之间的连接方式及蛋白质-多糖复合体系形成传递系统的多种形式进行了综述,以及对此领域的发展趋势进行了展望。结合蛋白质和多糖的结构特点,二者之间的链接方式分为非共价结合的物理共聚,和共价结合的美拉德偶联、化学交联、酶催化交联等方式,文中分别对各种连接方式的原理和机理,以及其影响因素做了深入阐述。以蛋白质-多糖复合体系为壁材对活性物质的传递形式大体上分成乳化系统、胶束、纳米凝胶、分子复合物以及壳核结构等系统。不同的活性物质的特征和传递需求,可针对性地选择合适结构的蛋白质和多糖种类以及二者的连接方式和传递系统的形式。并且,随着研究的逐步发展和推进,此领域的发展趋势朝着智能化和靶向性的方向进行。目前活性物质的蛋白质-多糖复合体系的传递系统,还依然面临着系统设计、评价和应用等多方面的挑战,这就要求我们在更全面更深入了解认识其对活性物质影响和功效的基础上,安全合理地设计和深入细致地评价活性成分的传递系统。

Protein-polysaccharide complex system, as the wall material of bioactive ingredient delivery systems, have multiple advantages that other materials such as synthetic polymers or inorganic materials do not have. The connection mode between protein and polysaccharide, the various forms of protein-polysaccharide complex forming delivery system are reviewed, and the development trend of this field is prospected. According to the structural characteristics of proteins and polysaccharides, the linking methods between the two are divided into non-covalent binding such as physical copolymerization, and covalent binding such as Maillard coupling, chemical cross-linking, and enzyme-catalyzed cross-linking. The binding mechanism of the above connection methods and the influencing factors are expounded. The delivery forms of active ingredients with protein polysaccharide complexes as wall materials are generally divided into emulsion systems, micelles, nanogels, molecular complexes, and shell-core structure systems. According to the characteristics and delivery requirements of different active ingredients, proteins and polysaccharides with suitable structures and types, as well as their connection methods and delivery systems, can be selected in a targeted manner. Moreover, with the gradual development and advancement of research, the development trend in this field is moving towards the direction of intelligence and targeting. At present, the protein-polysaccharide complexes delivery system of active ingredients still faces many challenges in system design, evaluation and application. This requires us to design and evaluate the delivery system of active ingredients in a safe and reasonable manner based on a more comprehensive and in-depth study of its impact and efficacy on active ingredients.

()
图1 蛋白质多糖结合方式示意图
Fig. 1 Schematic diagram of the binding mode of protein and polysaccharide
图2 (a)决定蛋白质和多糖凝聚的三个pH节点:pHc、pHφ1、pHφ2;以及(b)离子强度对pH节点的影响[28]
Fig. 2 (a) Three pH nodes determining protein and polysaccharide aggregation: pHc, pHφ1, pHφ2; and (b) the effect of ionic strength on the pH node (b)[28]. Copyright 2003, ACS
图3 不同参数对复合凝聚过程的影响
Fig. 3 Effects of different parameters on the process of protein-polysaccharide complex coacervation
图4 美拉德反应形成蛋白质-多糖共价复合物示意图[32]
Fig. 4 Schematic diagram of the Maillard reaction to form protein-polysaccharide covalent complexes[32], Copyright 2003, China Agricultural University
图5 EDC/NHS偶联蛋白质和含羧基多糖反应历程图
Fig. 5 EDC/NHS coupling reaction scheme
图6 DMTMM偶联蛋白质和含羧基多糖反应历程图
Fig. 6 DMTMM coupling process of hyaluronic acid and amine-containing compounds
图7 (a)、(b) 京尼平与含伯氨化合物交联反应机理, (c)多糖和蛋白质之间通过京尼平交联的模式 (R1、R2:任一为蛋白质,另一为氨基多糖)
Fig. 7 (a),(b) Mechanism of cross-linking reaction between genipin and compounds containing primary ammonia, (c) Patterns of cross-linking between polysaccharides and proteins via genipin(R1, R2:one of them is protein, the other is aminopolysaccharide)
图8 谷氨酰胺转胺酶催化蛋白质和氨基多糖的反应历程
Fig. 8 Transglutaminase-catalyzed reaction process
图9 漆酶、过氧化物酶和酪氨酸酶对含酚结构化合物进行酶促氧化机理
Fig. 9 Laccase, peroxidase and tyrosinase enzymatic oxidation mechanism of compounds containing phenolic structures
表1 蛋白质-多糖复合体系结合方式及其影响因素
Table 1 The binding mode of protein-polysaccharide complex and its influencing factors
图10 蛋白质-多糖复合体系对生物活性物质的包埋传递形式示意图
Fig. 10 Schematic of the delivery system for active ingredients by proteoglycan-saccharide complexes
表2 蛋白质-多糖复合体系转递活性物质系统类型及其功能
Table 2 Types and functions of protein-polysaccharide complex delivery system for active ingredients
active ingredients Wall Material/Methods delivery system Function/Purpose ref
Lycopene WPI-SA/ transglutaminase cross-
linked, emulsification
Nanoemul-sion lycopene-loaded emulsion showed better photochemical and gastrointestinal stability, strong anti-inflammatory activity against Caco-2 cells, and increased lycopene uptake by Caco-2 cells 78
Blackberry tree anthocyanins Gelatin-GA/complex coacervation Multiple emulsion Blackberry tree anthocyanins were microencapsulated by a double-emulsion system composed of gelatin and gum arabic, the structure and properties were evaluated, and the effect on the stability of anthocyanins was determined. 4
curcumin Gliadin-Chitosan/ Anti-
solvent dispersion
Pickering emulsion The gliadin-chitosan Pickering emulsion has a high internal phase, is partially wetted, effectively adsorbed and fixed at the oil-water interface, provides steric hindrance, and has suitable viscoelasticity, while protecting curcumin. 75
Canola oil WPC- GA/complex coacervation Pickering double emulsions Pickering O/W/O double emulsion prepared from WPC- GA complex with long-term stability. 79
naringenin β-CN-dextran/ Maillard reaction,
self-assembly
micelle Dextran-induced β-CN glycosylation to improve the stability of naringenin-loaded β-CN micelles in acidic and high calcium environments 80
curcumin OVA-Pul/Maillard reaction,
Heat treatment
nanogel OVA-Pul nanogels have good storage stability and facilitate the controlled release of curcumin during digestion 81
cinnamaldehyde GelatiN- HMP or LMP/
complex coacervation
Molecular complex Pectin type and gelatin conformation significantly affect the overall coordination and properties of cinnamaldehyde microcapsules 82
EGCG hordein-chitosan/Anti-solvent dispersion, Electrostatic deposition Shell-Core particle Chitosan-coated barley soluble pale white shell-structured core nanoparticles have high encapsulation efficiency of EGCG and penetrate into epithelial cells through vesicle-mediated endocytosis and macropinocytosis 22
Hyperoside SPI-SSPS/Anti-solvent dispersion, Electrostatic deposition Shell-Core particle The main forces for the formation of nanoparticles were electrostatic interaction, hydrogen bond interaction and hydrophobic interaction. The encapsulation efficiency is high, and the encapsulated HYP maintains its high antioxidant capacity. 83
图11 壳核结构的EGCG-大麦醇溶蛋白/壳聚糖(Cs-EHNs)纳米颗粒的制备示意图,以及该纳米颗粒在Caco-2/HT29细胞中的吸收和跨细胞渗透性[22]
Fig. 11 Schematic illustration of the preparation of shell-core structured EGCG-hordein/chitosan (Cs-EHNs) nanoparticles, and their uptake and transcellular permeability in Caco-2/HT29 cells[22]. Copyright 2021, Elsevier
图12 牛血清蛋白(BSA)修饰制备成热敏响应性囊泡(a)热敏感物质PNIPAAm聚合物与BSA的偶联方案;(b)皮克林乳剂形成的蛋白囊泡微室方案;(c)蛋白囊泡形成了一个热门控系统,该系统通过溶胀或脱溶胀来运行;(d)在两种反应物(2-甲氧基苯酚和H2O2)存在下,游离肌红蛋白(黑线)和蛋白体包覆肌红蛋白(红线)相应的温度依赖性催化反应速率[102]
Fig. 12 Thermoresponsive vesicles prepared by modification of bovine serum albumin(BSA)(a) Coupling scheme of thermosensitive substance PNIPAAm polymer and BSA; (b) scheme of protein vesicle microchamber formed by Pickering emulsion; (c) protein vesicle A thermally controlled system is formed that operates by swelling or de-swelling; (d) Corresponding temperature-dependent catalytic reaction rates for free myoglobin (black line) and protein body encapsulated myoglobin (red line) in the presence of two reactants (2-methoxyphenol and H2O2)[102]. Copyright 2013, Nature
图13 (a)靶向DNPs纳米颗粒的构建方案,(b)上皮细胞对胰岛素的摄取机制,以及(c)DNPs从胆汁酸途径经上皮细胞转运克服肠道上皮细胞的多重屏障的示意图[103]
Fig. 13 (a) Construction scheme of nanoparticles targeting DNPs, (b) mechanism of insulin uptake by epithelial cells, and (c) schematic diagram of the transport of DNPs from the bile acid pathway through epithelial cells to overcome the multiple barriers of intestinal epithelial cells[103]. Copyright 2013, University of Chinese Academy of Sciences
[1]
Nowak E, Livney Y D, Niu Z, Singh H. Trends in Food Science & Technology, 2019, 91: 557.
[2]
Huang X X, Huang X L, Gong Y S, Xiao H, McClements D J, Hu K. Food Res. Int., 2016, 87: 1.

doi: 10.1016/j.foodres.2016.06.009     URL    
[3]
Thongkaew C, Gibis M, Hinrichs J, Weiss J. Food Hydrocolloids, 2014, 41: 103.

doi: 10.1016/j.foodhyd.2014.02.006     URL    
[4]
Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, Huang Q. Food Hydrocolloids, 2018, 77: 803.

doi: 10.1016/j.foodhyd.2017.11.024     URL    
[5]
Wei Z, Yang W, Fan R, Yuan F, Gao Y. Food Hydrocolloids, 2015, 45: 337.

doi: 10.1016/j.foodhyd.2014.12.008     URL    
[6]
Troszynska A, Narolewska O, Robredo S, Estrella I, Hernandez T, Lamparski G, Amarowicz R. Food Quality and Preference, 2010, 21 (5): 463.

doi: 10.1016/j.foodqual.2009.12.005     URL    
[7]
Ting Y, Jiang Y, Zhao S, Li C C, Nibber T, Huang Q. Journal of Functional Foods, 2018, 40: 520.

doi: 10.1016/j.jff.2017.11.043     URL    
[8]
Chen G, Roy I, Yang C, Prasad P N. Chem Rev, 2016, 116 (5): 2826.

doi: 10.1021/acs.chemrev.5b00148     URL    
[9]
Zhao Y, Cao W Q, Liu Y. Chemical Research in Chinese Universitie, 2020, 41 (5): 909.
赵宇, 曹琬晴, 刘阳. 高等学校化学学报, 2020, 41 (5): 909.).
[10]
Fonte P, Araujo F, Silva C, Pereira C, Reis S, Santos H A, Sarmento B. Biotechnol Adv, 2015, 33 (6 Pt 3): 1342.
[11]
Nur M, Vasiljevic T. Int J Biol. Macromol., 2017, 103: 889.

doi: 10.1016/j.ijbiomac.2017.05.138     URL    
[12]
Wang S Y, Feng Y M, Wu J L, Chen X, Feng J W, Shi X D, Cai X X, Zhang F. Food Sci., 2021, 42(17): 1.

doi: 10.1111/j.1365-2621.1977.tb01204.x     URL    
汪少芸, 冯雅梅, 伍久林, 陈旭, 冯佳雯, 施晓丹, 蔡茜茜, 张芳. 食品科学, 2021, 42(17): 1. ).
[13]
Beneke C E, Viljoen A M, Hamman J H. Molecules, 2009, 14 (7): 2602.

doi: 10.3390/molecules14072602     URL    
[14]
Cortes-Morales E A, Mendez-Montealvo G, Velazquez G. Adv Colloid Interface Sci, 2021, 295: 102398.

doi: 10.1016/j.cis.2021.102398     URL    
[15]
Feki A, Hamdi M, Jaballi I, Zghal S, Nasri M, Ben Amara I. Carbohydr Polym, 2020, 236: 116046.

doi: 10.1016/j.carbpol.2020.116046     URL    
[16]
Devi N, Sarmah M, Khatun B, Maji T K. Adv. Colloid Interface Sci., 2017, 239: 136.

doi: 10.1016/j.cis.2016.05.009     URL    
[17]
Wei Z H, Huang Q R. J. Agric. Food Chem., 2019, 67(5): 1344.

doi: 10.1021/acs.jafc.8b06063     URL    
[18]
Zhang Z, Hao G, Liu C, Fu J, Hu D, Rong J, Yang X. Food Res. Int., 2021, 147: 110564.

doi: 10.1016/j.foodres.2021.110564     URL    
[19]
Laplante S, Turgeon S L, Paquin P. Carbohydrate Polymers, 2006, 65 (4): 479.

doi: 10.1016/j.carbpol.2006.02.024     URL    
[20]
Chen Y Q, Song H D, Huang K, Guan X. Food Funct., 2021, 12(19): 9165.

doi: 10.1039/D1FO01411K     URL    
[21]
Tiebackx F W. Colloid and Polymer Science, 1911, 8 (4): 198.
[22]
Song H D, He A J, Guan X, Chen Z Y, Bao Y Z, Huang K. Int. J. Biol. Macromol., 2022, 196: 144.

doi: 10.1016/j.ijbiomac.2021.12.024     URL    
[23]
Ji N. Doctoral Dissertation of Jiangnan University, 2019.
姬娜. 江南大学博士论文, 2019.).
[24]
Lim H P, Ooi C W, Tey B T, Chan eng-seng. React. Funct. Polym., 2017, 120: 20.

doi: 10.1016/j.reactfunctpolym.2017.08.015     URL    
[25]
Lu M L, Li Z J, Liang H, Shi M X, Zhao L H, Li W, Chen Y Y, Wu J D, Wang S S, Chen X D, Yuan Q P, Li Y. Food Hydrocoll., 2015, 51: 476.

doi: 10.1016/j.foodhyd.2015.05.036     URL    
[26]
Ru Q M, Wang Y W, Lee J, Ding Y T, Huang Q R. Carbohydr. Polym., 2012, 88(3): 838.

doi: 10.1016/j.carbpol.2012.01.019     URL    
[27]
Hu B, Wang S S, Li J, Zeng X X, Huang Q R. J. Phys. Chem. B, 2011, 115(23): 7515.

doi: 10.1021/jp2013557     URL    
[28]
Weinbreck F, de Vries R, Schrooyen P, de Kruif C G. Biomacromolecules, 2003, 4(2): 293.

pmid: 12625724
[29]
Eghbal N, Choudhary R. LWT, 2018, 90: 254.

doi: 10.1016/j.lwt.2017.12.036     URL    
[30]
Chen C, Chen F S, Liu B Y. The Food Industry, 2019, 40 (2): 225.
陈晨, 陈复生, 刘伯业. 食品工业, 2019, 40 (2): 225.).
[31]
Zhou Y, Petrova S P, Edgar K J. Carbohydr. Polym., 2021, 274: 118662.

doi: 10.1016/j.carbpol.2021.118662     URL    
[32]
Liu F G. Doctoral Dissertation of China Agricultural University, 2017.
刘夫国. 中国农业大学博士论文, 2017.).
[33]
Aoki T, Iskandar S, Yoshida T, Takahashi K, Hattori M. Biosci. Biotechnol. Biochem., 2006, 70(10): 2349.

doi: 10.1271/bbb.50398     URL    
[34]
Consoli L, Dias R A O, Rabelo R S, Furtado G F, Sussulini A, Cunha R L, Hubinger M D. Food Hydrocoll., 2018, 84: 458.

doi: 10.1016/j.foodhyd.2018.06.017     URL    
[35]
Liu Q, Li M, Xiong L, Qiu L Z, Bian X L, Sun C R, Sun Q J. Food Hydrocoll., 2019, 92: 86.

doi: 10.1016/j.foodhyd.2019.01.054     URL    
[36]
Zhou H H, Sun X Y, Zhang L L, Zhang P, Li J, Liu Y N. Langmuir, 2012, 28(41): 14553.

doi: 10.1021/la303062j     URL    
[37]
Martinez-Alvarenga M S, Martinez-Rodriguez E Y, Garcia-Amezquita L E, Olivas G I, Zamudio-Flores P B, Acosta-Muniz C H, Sepulveda D R. Food Hydrocoll., 2014, 38: 110.

doi: 10.1016/j.foodhyd.2013.11.006     URL    
[38]
Liu Q, Cui H, Muhoza B, Hayat K, Hussain S, Tahir M U, Zhang X, Ho C T. LWT, 2021, 148.
[39]
Silvan J M, Assar S H, Srey C, Dolores Del Castillo M, Ames J M. Food Chem., 2011, 128 (1): 208.

doi: 10.1016/j.foodchem.2011.03.047     URL    
[40]
Zhu D, Damodaran S, Lucey J A. Journal of Agricultural and Food Chemistry, 2008, 56 (16): 7113.

doi: 10.1021/jf800909w     URL    
[41]
Wang D, Mao L, Dai L, Yuan F, Gao Y. Food Hydrocolloids, 2018, 80: 281.

doi: 10.1016/j.foodhyd.2017.11.031     URL    
[42]
Kaczmarek B, Sionkowska A, Kozlowska J, Osyczka A M. Int. J. Biol. Macromol., 2018, 107 (Pt A): 247.
[43]
Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Int. J. Biol. Macromol., 2019, 126: 620.

doi: S0141-8130(18)32335-3     pmid: 30562517
[44]
Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Lab Chip, 2009, 9 (24): 3481.

doi: 10.1039/b914270c     URL    
[45]
Nakajima N, Ikada Y. Bioconjugate Chem., 1995, 6(1): 123.

pmid: 7711098
[46]
D’Este M, Eglin D, Alini M. Carbohydr. Polym., 2014, 108: 239.

doi: 10.1016/j.carbpol.2014.02.070     URL    
[47]
Farkas P, Bystricky S. Carbohydrate Polymers, 2007, 68 (1): 187.

doi: 10.1016/j.carbpol.2006.07.013     URL    
[48]
Farkas P, Cizova A, Bekesova S, Bystricky S. Int. J. Biol. Macromol., 2013, 60: 325.

doi: 10.1016/j.ijbiomac.2013.06.014     URL    
[49]
Labre F, Mathieu S, Chaud P, Morvan P Y, VallÉe R, Helbert W, Fort S. Carbohydr. Polym., 2018, 184: 427.

doi: 10.1016/j.carbpol.2017.12.069     URL    
[50]
Golunova A, Velychkivska N, Miksovska Z, Chochola V, Jaros J, Hampl A, Pop-Georgievski O, Proks V. Int. J. Mol. Sci., 2021, 22 (11).
[51]
Zhang C, Wang P, Li J, Zhang H, Weiss J. Food Hydrocolloids, 2021, 119.
[52]
Shanmugam M K, Shen H Y, Tang F R, Arfuso F, Rajesh M, Wang L Z, Kumar A P, Bian J S, Goh B C, Bishayee A, Sethi G. Pharmacol. Res., 2018, 133: 195.

doi: S1043-6618(17)31356-7     pmid: 29758279
[53]
Butler M F, Ng Y F, Pudney P D A. J. Polym. Sci. A Polym. Chem., 2003, 41(24): 3941.

doi: 10.1002/pola.10960     URL    
[54]
Adamiak K, Sionkowska A. Int. J. Biol. Macromol., 2020, 161: 550.

doi: 10.1016/j.ijbiomac.2020.06.075     URL    
[55]
Mi F L. Biomacromolecules, 2005, 6(2): 975.

doi: 10.1021/bm049335p     URL    
[56]
Wu T, Liu C, Hu X. Food Chem., 2022, 372: 131332.

doi: 10.1016/j.foodchem.2021.131332     URL    
[57]
Buchert J, Ercili Cura D, Ma H R, Gasparetti C, Monogioudi E, Faccio G, Mattinen M, Boer H, Partanen R, Selinheimo E, Lantto R, Kruus K. Annu. Rev. Food Sci. Technol., 2010, 1: 113.

doi: 10.1146/annurev.food.080708.100841     URL    
[58]
Isaschar-Ovdat S, Fishman A. Trends Food Sci. Technol., 2018, 72: 134.

doi: 10.1016/j.tifs.2017.12.011     URL    
[59]
Yang R, Zuo P, Zhang M, Meng D M, Wang B W, Zhen T Y. Food Hydrocoll., 2019, 94: 500.

doi: 10.1016/j.foodhyd.2019.03.049     URL    
[60]
Li X Q, Li S Q, Liang X P, McClements D J, Liu X B, Liu F G. Trends Food Sci. Technol., 2020, 103: 78.

doi: 10.1016/j.tifs.2020.06.014     URL    
[61]
Chen T H, Small D A, Wu L Q, Rubloff G W, Ghodssi R, Vazquez-Duhalt R, Bentley W E, Payne G F. Langmuir, 2003, 19(22): 9382.

doi: 10.1021/la0347096     URL    
[62]
Chen T H, Embree H D, Brown E M, Taylor M M, Payne G F. Biomaterials, 2003, 24(17): 2831.

doi: 10.1016/S0142-9612(03)00096-6     URL    
[63]
Zhang Q, Jeganathan B, Dong H M, Chen L Y, Vasanthan T. Food Chem., 2021, 344: 128569.

doi: 10.1016/j.foodchem.2020.128569     URL    
[64]
Jiang L, Ren Y M, Xiao Y H, Liu S S, Zhang J H, Yu Q, Chen Y, Xie J H. Carbohydr. Polym., 2020, 242: 116424.

doi: 10.1016/j.carbpol.2020.116424     URL    
[65]
Wang L, Cao Y P, Zhang K, Fang Y P, Nishinari K, Phillips G O. Colloids Surf. A Physicochem. Eng. Aspects, 2015, 482: 604.

doi: 10.1016/j.colsurfa.2015.07.011     URL    
[66]
Xiong W F, Deng Q C, Li J, Li B, Zhong Q X. Food Hydrocoll., 2020, 98: 105282.

doi: 10.1016/j.foodhyd.2019.105282     URL    
[67]
Ghaedi N, Hosseini E. LWT, 2021, 152: 112352.

doi: 10.1016/j.lwt.2021.112352     URL    
[68]
Lin J W, Meng H C, Yu S J, Wang Z M, Ai C, Zhang T, Guo X M. Food Hydrocoll., 2021, 112: 106306.

doi: 10.1016/j.foodhyd.2020.106306     URL    
[69]
Choi Y R, Kim E H, Lim S, Choi Y S. Biochem. Eng. J., 2018, 129: 50.

doi: 10.1016/j.bej.2017.10.016     URL    
[70]
Li J L, Cheng Y Q, Wang P, Zhao W T, Yin L J, Saito M. Food Hydrocoll., 2012, 26(2): 448.

doi: 10.1016/j.foodhyd.2010.11.015     URL    
[71]
Wang D, Lv P F, Zhang L, Yang S Q, Gao Y X. J. Agric. Food Chem., 2019, 67(43): 12054.

doi: 10.1021/acs.jafc.9b04557     URL    
[72]
Huang X L, Dai Y Q, Cai J X, Zhong N J, Xiao H, McClements D J, Hu K. Food Hydrocoll., 2017, 64: 157.

doi: 10.1016/j.foodhyd.2016.10.029     URL    
[73]
Feng J, Wu S S, Wang H, Liu S B. J. Funct. Foods, 2016, 27: 55.

doi: 10.1016/j.jff.2016.09.002     URL    
[74]
Li Z, Gu L W. J. Agric. Food Chem., 2014, 62(6): 1301.

doi: 10.1021/jf404621f     URL    
[75]
Zeng T, Wu Z L, Zhu J Y, Yin S W, Tang C H, Wu L Y, Yang X Q. Food Chem., 2017, 231: 122.

doi: S0308-8146(17)30512-5     pmid: 28449988
[76]
Shi Y Q, Liang R, Chen L, Liu H, Goff H D, Ma J G, Zhong F. Food Hydrocoll., 2019, 87: 582.

doi: 10.1016/j.foodhyd.2018.08.039     URL    
[77]
Faridi Esfanjani A, Jafari S M, Assadpour E. Food Chem., 2017, 221: 1962.

doi: S0308-8146(16)31998-7     pmid: 27979187
[78]
Liu F, Liang X, Yan J, Zhao S, Li S, Liu X, Ngai T, McClements D J. Biomaterials, 2022, 280: 121265.

doi: 10.1016/j.biomaterials.2021.121265     URL    
[79]
Estrada-Fernández A G, Román-Guerrero A, JimÉnez-Alvarado R, Lobato-Calleros C, Alvarez-Ramirez J, Vernon-Carter E J. J. Food Eng., 2018, 221: 35.

doi: 10.1016/j.jfoodeng.2017.10.006     URL    
[80]
Li M, Wen X, Wang K L, Liu Z H, Ni Y Y. Food Chem., 2022, 387: 132914.

doi: 10.1016/j.foodchem.2022.132914     URL    
[81]
Zeng Q, Zeng W, Jin Y, Sheng L. Food Chem., 2022, 367: 130716.

doi: 10.1016/j.foodchem.2021.130716     URL    
[82]
Muhoza B, Xia S, Cai J, Zhang X, Duhoranimana E, Su J. Food Hydrocolloids, 2019, 87: 712.

doi: 10.1016/j.foodhyd.2018.08.051     URL    
[83]
Wu D, Tang L, Zeng Z, Zhang J, Hu X, Pan Q, Geng F, Li H. Food Chem., 2022, 386: 132837.

doi: 10.1016/j.foodchem.2022.132837     URL    
[84]
Tian S W, Mao G L, Zhang J Y, Li N, Jiang M Y, Wu W. Prog. Chem., 2020, 32(4): 434.
田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 化学进展, 2020, 32(4): 434. ).

doi: 10.7536/PC190633    
[85]
Wei Z H, Huang Q R. Food Hydrocoll., 2019, 89: 590.

doi: 10.1016/j.foodhyd.2018.11.037     URL    
[86]
Neamtu I, Rusu A G, Diaconu A, Nita L E, Chiriac A P. Drug Deliv., 2017, 24(1): 539.

doi: 10.1080/10717544.2016.1276232     URL    
[87]
Yu Q L, Li Z, Dou C Y, Zhao Y P, Gong J X, Zhang J F. Prog. Chem., 2020, 32(S1): 179.
于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32(S1): 179. ).
[88]
Papagiannopoulos A, Vlassi E, Radulescu A. Carbohydr. Polym., 2019, 218: 218.

doi: 10.1016/j.carbpol.2019.04.077     URL    
[89]
Tai M R, Cai H Y, Li R, Chen J P, Jia X J, Song B B, Liu X F, Tang Z D, Ji H W, Zhong S Y. Food and Fermentation Industries. 2022, 48 (3): 291.
太敏瑞, 蔡泓滢, 李瑞, 陈建平, 贾学静, 宋兵兵, 刘晓菲, 唐振冬, 吉宏武, 钟赛意. 食品与发酵工业, 2022, 48 (3): 291.).
[90]
Liu C, Zhang Z, Kong Q J, Zhang R G, Yang X B. RSC Adv., 2019, 9(18): 10004.

doi: 10.1039/C8RA07783E     URL    
[91]
Chen Y C, Yu S H, Tsai G J, Tang D W, Mi F L, Peng Y P. J. Agric. Food Chem., 2010, 58(11): 6728.

doi: 10.1021/jf1005116     URL    
[92]
Wei Z H, Gao Y X. LWT Food Sci. Technol., 2016, 71: 295.

doi: 10.1016/j.lwt.2016.04.007     URL    
[93]
Xia S Q, Li Y Q, Xia Q Y, Zhang X M, Huang Q R. Food Hydrocoll., 2015, 43: 228.

doi: 10.1016/j.foodhyd.2014.05.022     URL    
[94]
Liu F G, Sun C X, Wang D, Yuan F, Gao Y X. RSC Adv., 2015, 5(95): 78215.

doi: 10.1039/C5RA15261E     URL    
[95]
Liu F G, Wang D, Xu H G, Sun C X, Gao Y X. Food Chem., 2016, 196: 338.

doi: 10.1016/j.foodchem.2015.09.047     URL    
[96]
Liu F G, Ma C C, Zhang R J, Gao Y X, Julian McClements D. Food Chem., 2017, 221: 395.

doi: 10.1016/j.foodchem.2016.10.057     URL    
[97]
Chen F P, Ou S Y, Tang C H. J. Agric. Food Chem., 2016, 64(24): 5053.

doi: 10.1021/acs.jafc.6b01176     URL    
[98]
Hu X L, Zhang Y Q, Xie Z G, Jing X B, Bellotti A, Gu Z. Biomacromolecules, 2017, 18(3): 649.

doi: 10.1021/acs.biomac.6b01704     URL    
[99]
Wang X H, Wang X Y, Jin S X, Muhammad N, Guo Z J. Chem. Rev., 2019, 119(2): 1138.

doi: 10.1021/acs.chemrev.8b00209     URL    
[100]
Jing X D, Sun Y, Yu B, Shen Y Q, Hu H, Cong H L. Progress in Chemistry, 2021, 33 (6): 926.
荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 化学进展, 2021, 33 (6): 926.).

doi: 10.7536/PC200728    
[101]
Li S, Lv H Y, Chen Y, Song H D, Zhang Y, Wang S, Luo L, Guan X. Carbohydr. Polym., 2022, 286: 119273.

doi: 10.1016/j.carbpol.2022.119273     URL    
[102]
Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Nat. Commun., 2013, 4: 2239.

doi: 10.1038/ncomms3239     pmid: 23896993
[103]
Fan W W. Doctoral Dissertation of University of Chinese Academy of Sciences, 2019.
范卫伟. 中国科学院大学博士论文, 2019.).
[104]
Fan W W, Xia D N, Zhu Q L, Li X Y, He S F, Zhu C L, Guo S Y, Hovgaard L, Yang M S, Gan Y. Biomaterials, 2018, 151: 13.

doi: 10.1016/j.biomaterials.2017.10.022     URL    
[105]
Nizzero S, Goel S, Hinkle L E, Wu X Y, Li C, Ferrari M, Shen H F. Sci. Adv., 2020, 6(26): eaba0145.

doi: 10.1126/sciadv.aba0145     URL    
[106]
Wang G, Zhao L C, jiang Q K, Sun Y X, Zhao D Y, Sun M C, He Z G, sun J, Wang Y. Asian J. Pharm. Sci., 2020, 15(2): 158.
[1] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[2] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[3] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[4] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[5] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[6] 杨海朋,陈仕国,李春辉,陈东成,戈早川. 纳米电化学生物传感器*[J]. 化学进展, 2009, 21(01): 210-216.
[7] 高群,万锕俊. 新型亲核NO共体Diazeniumdiolate及其靶向性控释材料*[J]. 化学进展, 2006, 18(09): 1101-1109.