English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1389-1398 DOI: 10.7536/PC230113 前一篇   后一篇

• 综述 •

金属有机框架纳米酶在临床检测中的应用

罗文浩1,2, 袁睿1,2, 孙金元1,2, 周连群3, 罗小河1,4,*(), 罗阳1,5,*()   

  1. 1 重庆大学医学院 重庆 400044
    2 重庆大学生物工程学院 重庆 400044
    3 中国科学院苏州生物医学工程技术研究所 苏州 215163
    4 重庆大学附属三峡医院 重庆 400044
    5 昆明医科大学生命科学与检验医学学院 昆明 650050
  • 收稿日期:2023-01-31 修回日期:2023-04-07 出版日期:2023-09-24 发布日期:2023-05-30
  • 基金资助:
    国家重点研发计划(2022YFC2009600); 国家重点研发计划(2022YFC2009603); 国家杰出青年科学基金(82125022); 国家自然科学基金项目(82202633); 国家自然科学基金项目(82072383); 重庆市高等教育教学改革研究项目(213035)

Metal-Organic Framework-Based Nanozymes for Clinical Applications

Wenhao Luo1,2, Rui Yuan1,2, Jinyuan Sun1,2, Lianqun Zhou3, Xiaohe Luo1,4(), Yang Luo1,5()   

  1. 1 School of Medicine, Chongqing University,Chongqing 400044, China
    2 College of Bioengineering, Chongqing University,Chongqing 400044, China
    3 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences,Suzhou 215163, China
    4 Chongqing University Three Gorges Hospital,Chongqing 400044, China
    5 College of Life Science and Laboratory Medicine, Kunming Medical University,Kunming 650050, China
  • Received:2023-01-31 Revised:2023-04-07 Online:2023-09-24 Published:2023-05-30
  • Contact: *e-mail: Luoy@cqu.edu.cn(Yang Luo); xiaoheluo@163.com(Xiaohe Luo)
  • Supported by:
    The National Key Research and Development Program of China(2022YFC2009600); The National Key Research and Development Program of China(2022YFC2009603); The National Science Fund for Distinguished Young Scholars(82125022); The National Natural Science Foundation of China(82202633); The National Natural Science Foundation of China(82072383); The Chongqing Higher Education Teaching Reform Research Project(213035)

酶作为天然的生物催化剂,在生物化学反应中发挥着重要的作用。由于天然酶受限其固有的缺点(稳定性低、成本高、储存困难等),具有催化活性的人工模拟酶应运而生。近年来,随着纳米材料迅速发展,仿酶催化纳米材料(纳米酶)逐渐受到研究者们的关注。纳米酶是一类具有类似天然酶活性的纳米材料,其制备过程简单、成本较低,有一定环境耐受性。然而大多数纳米酶类酶活性较低,稳定性相对较差,在生物分析应用中存在诸多困难。其中,金属有机框架(MOF)纳米酶具有高比表面积及孔隙率、活性位点均匀、较强的催化活性及稳定性等性质,且合成简单可控、成本低;此外,较天然酶而言,MOF纳米酶也以其独特的生物化学优势,在临床检测中发挥着巨大应用价值。本文主要基于MOF纳米酶的不同酶活性分类(过氧化物酶、氧化酶、过氧化氢酶、超氧化物歧化酶、水解酶),对其在核酸、蛋白质及小分子三大生物标志物在临床检测中的应用进行概述,并进一步展望了其在临床检测中面临的机遇与挑战,以推动MOF纳米酶的临床应用转化。

Enzymes are considered as natural biocatalysts, which catalyze many biochemical reactions with good catalytic efficiency, biocompatibility, and substrate specificity. The intrinsic limitations of natural enzymes such as low stability, high cost, and storage difficulty have led to the introduction of artificial enzymes that imitate the activity of natural enzymes. With the rapid development of nanomaterials in the recent decade, novel enzyme-mimicking nanomaterials (nanozymes) have attracted considerable attention from researchers. Nanozymes are defined as a class of artificial nanomaterials possessing intrinsic enzymes-like activities, which have the advantages of simple preparation processes, low cost and some environmental tolerance. However, most of them are limited by their low activity and relatively poor stability, leading to many difficulties in the application of biochemical analysis. Among them, metal-organic framework nanozymes (MOFs) have demonstrated a wide range of uses because of their evident favorable circumstances, including the large surface area and porosity for functionalization, uniform active sites, high catalytic activity and stability, simple and controllable synthesis and low cost. In this review, we provide a summary of the clinical detection application of MOFs in nucleic acid, protein and small molecules based on their different activity classification (peroxidase, oxidase, catalase, superoxide dismutase, and hydrolase). Finally, we look forward to the opportunities and challenges that MOFs will face in clinical detection, promoting their clinical application transformation.

Contents

1 Introduction

2 Classification of MOF nanozymes

2.1 Peroxidase

2.2 Oxidase

2.3 Catalase

2.4 Superoxide dismutase

2.5 Hydrolase

3 Application of MOF nanozymes in clinical detection

3.1 Application of MOF nanozymes in nucleic acid detection

3.2 Application of MOF nanozymes in protein detection

3.3 Application of MOF nanozymes in the detection of small molecule

4 Conclusion and outlook

4.1 Strengthening environmental stability

4.2 Enhancing substrate specificity

4.3 Enhancing the enzymes-like catalytic activity

()
表1 MOF 纳米酶的主要分类[8,11???????????? ~24]
Table 1 The main classification of MOF nanozymes[8,11???????????? ~24]
图1 MOF纳米酶在核酸检测中的应用。(A)ZIF-8纳米酶触发级联催化反应,实现miRNA-21灵敏检测[54];(B)MOF级联核酸电路用于准确、灵敏地检测血清循环miRNA[57];(C)新型多功能铁基金属有机框架(PdNPs@Fe-MOFs)用于药物性肝损伤标记物miRNA-122超敏检测[58];(D)基于MOF纳米酶的miRNA流动均相电化学检测系统[59]
Fig.1 Application of MOF nanozymes in nucleic acid detection.(A)ZIF-8 nanozymes triggered cascade catalytic reaction for miRNA-21 detection[54];(B)MOF cascade nucleic acid circuit for circulating miRNA analyzing in serum[57];(C)multifunctional iron-based metal-organic framework (PdNPs@Fe-MOFs) for miRNA-122 identification[58];(D)MOF nanozymes assisted homogeneous electrochemical system for miRNA discrimination[59]
图2 MOF纳米酶在蛋白检测中的应用。(A)过氧化物酶模拟物Fe-MIL-88A用于凝血酶的检测[62];(B)碳布纤维表面合成的MOF-818用于凝血酶的检测[63];(C)模拟过氧化物酶的二维MOF用于碱性磷酸酶测定[68];(D)合成的MIL53(Fe)/G4-氯化血红素用于碱性磷酸酶检测[69]
Fig.2 Application of MOF nanozymes in protein detection. (A)peroxidase mimic Fe-MIL-88A for thrombin detection[62];(B)MOF-818 synthesized with the surface of carbon cloth fiber for the identification of thrombin[63];(C)Peroxidase mimic two-dimensional MOF for Alkaline Phosphatase determination[68];(D)MIL53 (Fe) / G4-hemin for the discrimination of alkaline phosphatase[69]
图3 MOF纳米酶在小分子检测中的应用。(A)Fe-MOF-Gox 级联催化检测葡萄糖[74];(B)合成的MOF纳米酶用于葡萄糖和半胱氨酸的检测[75];(C)ELISA中引入MOF纳米酶进行催化显色以测定黄曲霉毒素B1[78];(D)高过氧化物酶活性的Hemin@BSA@ZIF-8用于过氧化氢和双酚 A的检测[81]
Fig.3 Application of MOF nanozymes in the Detection of small molecules.(A)Fe-MOF-Gox cascade catalysis for glucose detection[74];(B)MOF nanozymes for the detection of glucose and Cysteine[75];(C)MOF nanozymes for the Determination of aflatoxin B1 in ELISA[78];(D)Hemin@BSA@ZIF-8 for H2O2 and bisphenol Aidentification[81]
[1]
Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.

doi: 10.1021/acs.chemrev.9b00223     pmid: 31246430
[2]
Arcus V L, van der Kamp M W, Pudney C R, Mulholland A J. Curr. Opin. Struct. Biol., 2020, 65: 96.

doi: 10.1016/j.sbi.2020.06.001     URL    
[3]
Zhang Y, Ge J, Liu Z. ACS Catal., 2015, 5(8): 4503.

doi: 10.1021/acscatal.5b00996     URL    
[4]
Liang M, Yan X. Acc. Chem. Res., 2019, 52(8): 2190.

doi: 10.1021/acs.accounts.9b00140     URL    
[5]
Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. J. Nanobiotechnology, 2022, 20(1): 92.
[6]
Wang S, McGuirk C M, d'Aquino A, Mason J A, Mirkin C A. Adv. Mater., 2018, 30(37): 1800202.

doi: 10.1002/adma.v30.37     URL    
[7]
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. ACS Appl. Mater. Interfaces, 2023, 15(3): 3826.

doi: 10.1021/acsami.2c20024     URL    
[8]
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Chem. Comm., 2020, 56(77): 11338.

doi: 10.1039/D0CC04890A     URL    
[9]
Wang D, Jana D, Zhao Y. Acc. Chem. Res., 2020, 53(7): 1389.

doi: 10.1021/acs.accounts.0c00268     URL    
[10]
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Coord. Chem. Rev., 2021, 449: 214216.

doi: 10.1016/j.ccr.2021.214216     URL    
[11]
Shu Y, Ye Q, Tan J, Lv H, Liu Z, Mo Q. ACS Appl. Nano Mater., 2022, 5(12): 17909.

doi: 10.1021/acsanm.2c03871     URL    
[12]
Wang J, Zhou Y, Zeng M, Zhao Y, Zuo X, Meng F, Lv F, Lu Y. Environ. Res., 2022, 203: 111818.

doi: 10.1016/j.envres.2021.111818     URL    
[13]
Mao Z, Chen J, Wang Y, Xia J, Zhang Y, Zhang W, Zhu H, Hu X, Chen H. Nanoscale, 2022, 14(26): 9474.

doi: 10.1039/D2NR01673G     URL    
[14]
Zandieh M, Liu J. Langmuir, 2022, 38(12): 3617.

doi: 10.1021/acs.langmuir.2c00070     URL    
[15]
Xia Y, Zhou J, Liu Y, Liu Y, Huang K, Yu H, Jiang X, Xiong X. Analyst, 2022, 147(23): 5355.

doi: 10.1039/d2an01420c     pmid: 36373378
[16]
Han M, Ren M, Li Z, Qu L, Yu L. New J. Chem., 2022, 46(22): 10682.

doi: 10.1039/D2NJ00876A     URL    
[17]
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Chem. Soc. Rev., 2019, 48(14): 3683.

doi: 10.1039/C8CS00718G     URL    
[18]
Xu D, Wu L, Yao H, Zhao L. Small, 2022, 18(37): 2203400.

doi: 10.1002/smll.v18.37     URL    
[19]
Wang D, Zhao Y. Chem, 2021, 7(10): 2635.

doi: 10.1016/j.chempr.2021.08.020     URL    
[20]
Li L, Li H, Shi L, Shi L, Li T. Langmuir, 2022, 38(23): 7272.

doi: 10.1021/acs.langmuir.2c00778     URL    
[21]
Wu T, Huang S, Yang H, Ye N, Tong L, Chen G, Zhou Q, Ouyang G. ACS Mater. Lett., 2022, 4(4): 751.
[22]
Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, Cui R, Liu W, Wan C, Liu Q, Zhao S, Wang Q, Zhang Y, Zhang S, Zhang H, Du Y, Wei H. Nat. Commun., 2022, 13(1): 827.

doi: 10.1038/s41467-022-28344-2    
[23]
Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac-Vogt T N, Serre C. Chem. Mater., 2021, 33(17): 7057.

doi: 10.1021/acs.chemmater.1c02174     URL    
[24]
Ly H G T, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt T N. J. Am. Chem. Soc., 2018, 140(20): 6325.

doi: 10.1021/jacs.8b01902     URL    
[25]
Thakur B, Karve V V, Sun D T, Semrau A L, Weiß L J K, Grob L, Fischer R A, Queen W L, Wolfrum B. Adv. Mater. Technol., 2021, 6(5): 2001048.

doi: 10.1002/admt.v6.5     URL    
[26]
Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. ACS Nano, 2019, 13(5): 5222.

doi: 10.1021/acsnano.8b09501     URL    
[27]
Yuan A, Lu Y, Zhang X, Chen Q, Huang Y. J. Mater. Chem. B, 2020, 8(40): 9295.

doi: 10.1039/d0tb01598a     pmid: 32959035
[28]
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. Anal. Bioanal. Chem., 2022, 414(9): 2971.

doi: 10.1007/s00216-022-03985-w     pmid: 35234980
[29]
Cheng X, Zhou X, Zheng Z, Kuang Q. Chem. Eng. J., 2022, 430: 133079.

doi: 10.1016/j.cej.2021.133079     URL    
[30]
Lee J, Liao H, Wang Q, Han J, Han J H, Shin H E, Ge M, Park W, Li F. Exploration, 2022, 2(1): 20210086.

doi: 10.1002/exp2.v2.1     URL    
[31]
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Small Methods, 2022, 6(11): 2200997.

doi: 10.1002/smtd.v6.11     URL    
[32]
Kandathil V, Patil S A. Adv. Colloid Interface Sci., 2021, 294: 102485.

doi: 10.1016/j.cis.2021.102485     URL    
[33]
Loosen A, Simms C, Smolders S, De Vos D E, Parac-Vogt T N. ACS Appl. Nano Mater., 2021, 4(6): 5748.

doi: 10.1021/acsanm.1c00546     URL    
[34]
Wang F, Chen L, Liu D, Ma W, Dramou P, He H. Trends Analyt. Chem., 2020, 133: 116080.

doi: 10.1016/j.trac.2020.116080     URL    
[35]
Chen G, Yu Y, Fu X, Wang G, Wang Z, Wu X, Ren J, Zhao Y. J. Colloid Interface Sci., 2022, 607(2): 1382.

doi: 10.1016/j.jcis.2021.09.016     URL    
[36]
Abdelhamid H N, Sharmoukh W. Microchem. J., 2021, 163: 105873.

doi: 10.1016/j.microc.2020.105873     URL    
[37]
He Z, Huang X, Wang C, Li X, Liu Y, Zhou Z, Wang S, Zhang F, Wang Z, Jacobson O, Zhu J J, Yu G, Dai Y, Chen X. Angew. Chem. Int. Ed., 2019, 58(26): 8752.

doi: 10.1002/anie.v58.26     URL    
[38]
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C W, Liu Q, Lin Y W, Du Y, Butch C J, Wei H. Sci. Adv., 2020, 6(29): eabb2695.

doi: 10.1126/sciadv.abb2695     URL    
[39]
Lewandowski Ł, Kepinska M, Milnerowicz H. Eur. J. Clin. Invest., 2019, 49(1): e13036.

doi: 10.1111/eci.2019.49.issue-1     URL    
[40]
Zhang X, Li G, Chen G, Wu D, Wu Y, James T D. Adv. Funct. Mater., 2021, 31(50): 2106139.

doi: 10.1002/adfm.v31.50     URL    
[41]
Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X. Mater. Horizons, 2019, 6(8): 1682.
[42]
Dou Y, Yang L, Qin L, Dong Y, Zhou Z, Zhang D. J. Solid State Chem., 2021, 293: 121820.

doi: 10.1016/j.jssc.2020.121820     URL    
[43]
Fan C, Tang Y, Wang H, Huang Y, Xu F, Yang Y, Huang Y, Rong W, Lin Y. Nanoscale, 2022, 14(22): 7985.

doi: 10.1039/D2NR01213H     URL    
[44]
Liu J, Liang J, Xue J, Liang K. Small, 2021, 17(32): 2100300.

doi: 10.1002/smll.v17.32     URL    
[45]
Fu T, Xu C, Guo R, Lin C, Huang Y, Tang Y, Wang H, Zhou Q, Lin Y. ACS Appl. Nano Mater., 2021, 4(4): 3345.

doi: 10.1021/acsanm.1c00540     URL    
[46]
Chen J, Huang L, Wang Q, Wu W, Zhang H, Fang Y, Dong S. Nanoscale, 2019, 11(13): 5960.

doi: 10.1039/C9NR01093A     URL    
[47]
Li S, Liu X, Chai H, Huang Y. Trends Analyt. Chem., 2018, 105: 391.

doi: 10.1016/j.trac.2018.06.001     URL    
[48]
Wang X, Wang Y, Ying Y. Trends Analyt. Chem., 2021, 143: 116395.

doi: 10.1016/j.trac.2021.116395     URL    
[49]
Chen X, Jia M, Liu L, Qiu X, Zhang H, Yu X, Gu W, Qing G, Li Q, Hu X, Wang R, Zhao X, Zhang L, Wang X, Durkan C, Wang N, Wang G, Luo Y. Small, 2020, 16(40): 2002800.

doi: 10.1002/smll.v16.40     URL    
[50]
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Biosensors, 2022, 12(9): 677.

doi: 10.3390/bios12090677     URL    
[51]
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Crit. Rev. Biotechnol., 2022: 1.
[52]
Bao J, Qiu X, Wang D, Yang H, Zhao J, Qi Y, Zhang L, Chen X, Yang M, Gu W, Huo D, Luo Y, Hou C. Adv. Funct. Mater., 2021, 31(14): 2006521.

doi: 10.1002/adfm.v31.14     URL    
[53]
Zhao X, Zhang L, Gao W, Yu X, Gu W, Fu W, Luo Y. ACS Appl. Mater. Interfaces, 2020, 12(32): 35958.

doi: 10.1021/acsami.0c10962     URL    
[54]
Kong L, Lv S, Qiao Z, Yan Y, Zhang J, Bi S. Biosens. Bioelectron., 2022, 207: 114188.

doi: 10.1016/j.bios.2022.114188     URL    
[55]
Li X, Li X, Li D, Zhao M, Wu H, Shen B, Liu P, Ding S. Biosens. Bioelectron., 2020, 168: 112554.

doi: 10.1016/j.bios.2020.112554     URL    
[56]
Li Y, Zhang C, He Y, Gao J, Li W, Cheng L, Sun F, Xia P, Wang Q. Biosens. Bioelectron., 2022, 203: 114051.

doi: 10.1016/j.bios.2022.114051     URL    
[57]
Zhang S, Xu S, Li X, Ma R, Cheng G, Xue Q, Wang H. Chem. Comm., 2020, 56(31): 4288.

doi: 10.1039/D0CC00856G     URL    
[58]
Li Y, Yu C, Yang B, Liu Z, Xia P, Wang Q. Biosens. Bioelectron., 2018, 102: 307.

doi: 10.1016/j.bios.2017.11.047     URL    
[59]
Wang Z, Zhang Y, Wang X, Han L. Biosens. Bioelectron., 2022, 206: 114120.

doi: 10.1016/j.bios.2022.114120     URL    
[60]
Yadav S, Kashaninejad N, Masud M K, Yamauchi Y, Nguyen N T, Shiddiky M J A. Biosens. Bioelectron., 2019, 139: 111315.

doi: 10.1016/j.bios.2019.111315     URL    
[61]
Ma Y, Song M, Li L, Lao X, Wong M C, Hao J. Exploration, 2022, 2(6): 20210216.

doi: 10.1002/exp2.v2.6     URL    
[62]
Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F. Biosens. Bioelectron., 2016, 86: 432.

doi: 10.1016/j.bios.2016.06.036     URL    
[63]
Jiang J, Wang Y, Kan X. Microchem. J., 2022, 172: 106965.

doi: 10.1016/j.microc.2021.106965     URL    
[64]
Jiang J, Cai Q, Deng M. Front. Chem., 2022, 9: 1194.
[65]
Zeng Y, Wang M, Sun Z, Sha L, Yang J, Li G. J. Mater. Chem. B, 2022, 10(3): 450.

doi: 10.1039/D1TB02192C     URL    
[66]
Feng J, Wang H, Ma Z. Microchim. Acta, 2020, 187(1): 95.

doi: 10.1007/s00604-019-4075-4    
[67]
Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X J A C A. Anal. Chim. Acta., 2020, 1121: 26.

doi: 10.1016/j.aca.2020.04.073     URL    
[68]
Wang X, Jiang X, Wei H. J. Mater. Chem. B, 2020, 8(31): 6905.

doi: 10.1039/C9TB02542A     URL    
[69]
Mao X, He F, Qiu D, Wei S, Luo R, Chen Y, Zhang X, Lei J, Monchaud D, Mergny J L, Ju H, Zhou J. Anal. Chem., 2022, 94(20): 7295.

doi: 10.1021/acs.analchem.2c00600     URL    
[70]
Zhou X, Wang M, Wang M, Su X. ACS Appl. Nano Mater., 2021, 4(8): 7888.

doi: 10.1021/acsanm.1c01220     URL    
[71]
Evans E H, Pisonero J, Smith C M M, Taylor R N. J. Anal. At Spectrom., 2020, 35(5): 830.

doi: 10.1039/D0JA90015J     URL    
[72]
Vargas Medina D A, Pereira dos Santos N G, da Silva Burato J S, Borsatto J V B, Lanças F M. J. Chromatogr. A, 2021, 1641: 461989.

doi: 10.1016/j.chroma.2021.461989     URL    
[73]
Adeel M, Asif K, Rahman M M, Daniele S, Canzonieri V, Rizzolio F. Adv. Funct. Mater., 2021, 31(52): 2106023.

doi: 10.1002/adfm.v31.52     URL    
[74]
Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. ACS Appl. Mater. Interfaces, 2019, 11(25): 22096.

doi: 10.1021/acsami.9b03004     URL    
[75]
Wang L, Ling Y, Han L, Zhou J, Sun Z, Li N B, Luo H Q. Anal. Chim. Acta, 2020, 1131: 118.

doi: S0003-2670(20)30789-3     pmid: 32928472
[76]
Hu H, Li P, Wang Z, Du Y, Kuang G, Feng Y, Jia S, Cui J. J. Agric. Food Chem., 2022, 70(12): 3785.

doi: 10.1021/acs.jafc.2c01639     URL    
[77]
Zeng X, Yan S, Liu B F. Microporous Mesoporous Mater., 2022, 335: 111826.

doi: 10.1016/j.micromeso.2022.111826     URL    
[78]
Xu Z, Long L L, Chen Y Q, Chen M L, Cheng Y H. Food Chem., 2021, 338: 128039.

doi: 10.1016/j.foodchem.2020.128039     URL    
[79]
Zhang Z, Liu Y, Huang P, Wu F Y, Ma L. Talanta, 2021, 232: 122411.

doi: 10.1016/j.talanta.2021.122411     URL    
[80]
Wang L, Chen Y. ACS Appl. Mater. Interfaces, 2020, 12(7): 8351.

doi: 10.1021/acsami.9b22537     URL    
[81]
Zhu N, Liu C, Liu R, Niu X, Xiong D, Wang K, Yin D, Zhang Z. Anal. Chem., 2022, 94(11): 4821.

doi: 10.1021/acs.analchem.2c00058     URL    
[1] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[2] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[3] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[4] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[5] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[6] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[7] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[8] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[9] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[10] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[11] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[12] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[13] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[14] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[15] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.