English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 628-636 DOI: 10.7536/PC170211 前一篇   后一篇

• 综述 •

多孔材料基π络合吸附材料的合成及其应用

殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华   

  1. 江苏科技大学环境与化学工程学院 镇江 212003
  • 收稿日期:2017-02-17 修回日期:2017-04-27 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 殷俞,e-mail:season_july@just.edu.cn E-mail:season_july@just.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51602133)和江苏省自然科学基金项目(No.BK20160555)资助

π Complexation Adsorbents Based on Porous Materials:Preparation and Application

Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2017-02-17 Revised:2017-04-27 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170211 E-mail:season_july@just.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51602133) and the Natural Science Foundation of Jiangsu Province (No. BK20160555).
π络合吸附分离技术以低能耗、高效和可再生等优点,在燃料油的脱硫、烯烃/烷烃气体的分离、混合气体中CO的分离几个方面有广泛的应用。吸附材料是π络合吸附分离技术的关键。本文围绕π络合吸附材料的合成方法及应用效果,综述国内外的一些重要研究进展。总体来说,将过渡金属离子(Cu(Ⅰ)、Ag(Ⅰ)和Pd(Ⅱ)等)引入高比表面积的载体是合成π络合吸附材料的普遍方法。至今,基于无机分子筛合成π络合吸附材料的方法包括离子交换、浸渍、固相研磨和空间限域等。研究者在这方面开展了大量的工作,且卓有成效。近年,研究者致力基于金属有机框架(MOFs)合成π络合吸附材料,包括未修饰和修饰的MOFs,具备较好的研究和应用前景。此外,本文总结了目前几种π络合吸附材料的优缺点,并对未来发展趋势进行展望。
π complexation techniques show the advantages of low energy consumption, high efficiency, and reproducibility, etc. Thus, the π complexation techniques have been widely used in the fields of fuel desulfurization, olefin/paraffin separation, and CO separation from gas mixtures. Adsorbents are the key factors to the π complexation techniques. This review focuses on the synthesis methods and application efficiency of the π complexation adsorbents, and summarizes some important advances both at home and abroad. In general, the universal methods to synthesize the π complexation adsorbents are introduction of transition metal ions (Cu(Ⅰ), Ag(Ⅰ), and Pd(Ⅱ), etc.) into the supports with high surface areas. So far, methods on preparation of π complexation adsorbents based on inorganic molecular sieves have been very detailed, including ion exchange, impregnation method, solid-state grinding, and space confining etc. In this respect, researchers have carried out a large amount of studies. Moreover, the adsorbents show high efficiency. Recently, researchers devote to preparation of π complexation adsorbents based on metal-organic frameworks (MOFs), including undecorated and decorated MOFs. This route has good prospects in research and application fields. In addition, this review summarizes the advantages and disadvantages of several π complexation adsorbents, and gives prospects for the future development trends.

Contents
1 Introduction
2 Preparation of π complexation adsorbents based on inorganic molecular sieves
2.1 Ion exchange method
2.2 Impregnation method
2.3 Solid-state grinding method
2.4 Space confining method
3 Preparation of π complexation adsorbents based on metal-organic frameworks (MOFs)
3.1 In situ π complexation adsorption sites
3.2 Construction of π complexation adsorption sites
4 Preparation of π complexation adsorbents based on other porous materials
5 Chemical theories of π complexation adsorption
6 Other applications of complexation effect
7 Conclusion and outlook

中图分类号: 

()
[1] Ahmed I, Jhung S H. Chem. Eng. J. 2017, 310:197.
[2] Song H, Chang Y X, Wan X, Dai M, Song H L, Jin Z S. Ind. Eng. Chem. Res. 2014, 53:5701.
[3] Zhou H, Zhang J, Ji D, Yuan A H, Shen X P. Microporous Mesoporous Mater. 2016, 229:68.
[4] Hernandez-Maldonado A J, Yang F H, Qi G, Yang R T. Appl. Catal. B 2005, 56:111.
[5] Velu S, Ma X L, Song C S. Ind. Eng. Chem. Res. 2003, 42:5293.
[6] Neubauer R, Husmann M, Weinlaender C, Kienzl N, Leitner E, Hochenauer C. Chem. Eng. J. 2017, 309:840.
[7] Liang W W, Xu F, Zhou X, Xiao J, Xia Q B, Li Y W, Li Z. Chem. Eng. Sci. 2016, 148:275.
[8] Song H, Yang G, Song H L, Cui X H, Li F, Yuan D D. J. Taiwan Inst. Chem. Eng. 2016, 63:125.
[9] Chen J, Zhang B, Miao G, Men J. Ind. Eng. Chem. Res. 2016, 55:5036.
[10] Xia Y T, Li Y K, Gu Y T, Jin T, Yang Q, Hu J, Liu H L, Wang H L. Fuel 2016, 170:100.
[11] Ganiyu S A, Alhooshani K, Sulaiman K O, Qamaruddin M, Bakare I A, Tanimu A, Saleh T A. Chem. Eng. J. 2016, 303:489.
[12] Zhang C, Zhang J C, Zhao Y G, Sun J Y, Wu G. Catal. Lett. 2016, 146:1256.
[13] Jin T, An S H, Yang X J, Hu J, Wang H L, Liu H L, Tian Z Q, Jiang D E, Mehio N, Zhu X. AlChE J. 2016, 62:1740.
[14] Han X N, Li H Z, Huang H K, Zhao L, Cao L Y, Wang Y X, Gao J S, Xu C M. RSC Adv. 2016, 6:75006.
[15] Zhang Q, Shi L, Meng X. RSC Adv. 2016, 6:9589.
[16] Zhao Y W, Shen B X, Sun H. RSC Adv. 2016, 6:93086.
[17] Xiong J, Zhu W S, Li H P, Yang L, Chao Y H, Wu P W, Xun S H, Jiang W, Zhang M, Li H M. J. Mater. Chem. A 2015, 3:12738.
[18] Xiong J, Zhu W S, Li H P, Ding W J, Chao Y H, Wu P W, Xun S H, Zhang M, Li H M. Green Chem. 2015, 17:1647.
[19] Wang Y H, Yang R T, Heinzel J M. Ind. Eng. Chem. Res. 2009, 48:142.
[20] Wang L F, Sun B D, Yang F H, Yang R T. Chem. Eng. Sci. 2012, 73:208.
[21] Yang R T, Hernandez-Maldonado A J, Yang F H. Science 2003, 301:79.
[22] Hernandez-Maldonado A J, Yang R T. J. Am. Chem. Soc. 2004, 126:992.
[23] Cui X L, Chen K J, Xing H B, Yang Q W, Krishna R, Bao Z B, Wu H, Zhou W, Dong X L, Han Y, Li B, Ren Q L, Zaworotko M J, Chen B L. Science 2016, 353:141.
[24] Cadiau A, Adil K, Bhatt P M, Belmabkhout Y, Eddaoudi M. Science 2016, 353:137.
[25] Yoon K W, Kang S W. Chem. Eng. J. 2016, 290:414.
[26] Liao K S, Lai J Y, Chung T S. J. Membr. Sci. 2016, 515:36.
[27] Bendt S, Hovestadt M, Bohme U, Paula C, Doepken M, Hartmann M, Keil F J. Eur. J. Inorg. Chem. 2016:4440.
[28] Cowan M G, McDanel W M, Funke H H, Kohno Y, Gin D L, Noble R D. Angew. Chem. Int. Ed. 2015, 54:5740.
[29] Jin M, Kim S S, Kim Y D, Park J N, Kim J H, Ko C H, Kim J N, Kim J M. J. Mater. Chem. A 2013, 1:6653.
[30] Azhin M, Kaghazchi T, Rahmani M. J. Ind. Eng. Chem. 2008, 14:622.
[31] Stoitsas K A, Gotzias A, Kikkinides E S, Steriotis T A, Kanellopoulos N K, Stoukides M, Zaspalis V T. Microporous Mesoporous Mater. 2005, 78:235.
[32] Saha D, Deng S G. J. Chem. Eng. Data 2009, 54:2245.
[33] Singh B, Saxena A, Srivastava A K, Vijayaraghavan R. Appl. Catal. B 2009, 88:257.
[34] Huang Y, Tao Y, He L, Duan Y, Xiao J, Li Z. Adsorption 2015, 21:373.
[35] Wang L, Zhao J J, Wang L L, Yan T Y, Sun Y Y, Zhang S B B. Phys. Chem. Chem. Phys. 2011, 13:21126.
[36] Xie Y C, Zhang J P, Qiu J G, Tong X Z, Fu J P, Yang G, Yan H J, Tang Y Q. Adsorption 1996, 3:27.
[37] Wang Y X, Li C, Meng F C, Lv S L, Guo J T, Liu X Q, Wang C Q, Ma Z F. Front. Chem. Sci. Eng. 2014, 8:340.
[38] Liu W, Pan X M, Wang J, Zhao B Y, Xie Y C. Acta Chim. Sinica 2001, 59:1021.
[39] Yin Y, Zhu J, Liu X Q, Tan P, Xue D M, Xing Z M, Sun L B. RSC Adv. 2016, 6:70446.
[40] Tian W H, Sun L B, Song X L, Liu X Q, Yin Y, He G S. Langmuir 2010, 26:17398.
[41] Qin J X, Wang Z M, Liu X Q, Li Y X, Sun L B. J. Mater. Chem. A 2015, 3:12247.
[42] Gao F, Wang Y Q, Wang S H. Chem. Eng. J. 2016, 290:418.
[43] Wang Y, Yang F H, Yang R T, Heinzel J M, Nickens A D. Ind. Eng. Chem. Res. 2006, 45:7649.
[44] Basaldella E I, Tara J C, Armenta G A, Iglesias M E P. J. Porous Mater. 2007, 14:273.
[45] Ma J H, Li L, Ren J, Li R F. Sep. Purif. Technol. 2010, 76:89.
[46] He G S, Sun L B, Song X L, Liu X Q, Yin Y, Wang Y C. Energy Fuels 2011, 25:3506.
[47] Gao F, Wang Y Q, Wang X, Wang S H. Adsorption 2016, 22:1013.
[48] Gao F, Wang Y Q, Wang X, Wang S H. RSC Adv. 2016, 6:34439.
[49] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science 1998, 279:548.
[50] Zhao D Y, Feng J L, Huo Q S, Melosh N, Rredrickson G H, Chmelka B F, Stucky G D. J. Am. Chem. Soc. 1998, 120:6024.
[51] Wang Y M, Wu Z Y, Shi L Y, Zhu J H. Adv. Mater. 2005, 17:323.
[52] Yin Y, Xue D M, Liu X Q, Xu G, Ye P, Wu M Y, Sun L B. Chem. Commun. 2012, 48:9495.
[53] Yin Y, Tan P, Liu X Q, Zhu J, Sun L B. J. Mater. Chem. A 2014, 2:3399.
[54] Yin Y, Jiang W J, Liu X Q, Li Y H, Sun L B. J. Mater. Chem. 2012, 22:18514.
[55] Jiang W J, Yin Y, Liu X Q, Yin X Q, Shi Y Q, Sun L B. J. Am. Chem. Soc. 2013, 135:8137.
[56] Yaghi O M, Li G, Li H. Nature 1995, 378:703.
[57] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science 2013, 341:974.
[58] Bohme U, Barth B, Paula C, Kuhnt A, Schwieger W, Mundstock A, Caro J, Hartmann M. Langmuir 2013, 29:8592.
[59] Martins V F D, Ribeiro A M, Ferreira A, Lee U H, Hwang Y K, Chang J S, Loureiro J M, Rodrigues A E. Sep. Purif. Technol. 2015, 149:445.
[60] Li Y X, Jiang W J, Tan P, Liu X Q, Zhang D Y, Sun L B. J. Phys. Chem. C 2015, 119:21969.
[61] Khan N A, Jhung S H. Angew. Chem. Int. Ed. 2012, 51:1198.
[62] Chang G G, Huang M H, Su Y, Xing H B, Su B G, Zhang Z G, Yang Q Q, Yang Y W, Ren Q L, Bao Z B, Chen B L. Chem. Commun. 2015, 51:2859.
[63] Zhang Y M, Li B Y, Krishna R, Wu Z L, Ma D X, Shi Z, Pham T, Forrest K, Space B, Ma S Q. Chem. Commun. 2015, 51:2714.
[64] Peng J J, Xian S K, Xiao J, Huang Y, Xia Q B, Wang H H, Li Z. Chem. Eng. J. 2015, 270:282.
[65] Li B Y, Zhang Y M, Krishna R, Yao K X, Han Y, Wu Z L, Ma D X, Shi Z, Pham T, Space B, Liu J, Thallapally P K, Liu J, Chrzanowski M, Ma S Q. J. Am. Chem. Soc. 2014, 136:8654.
[66] Weston M H, Colon Y J, Bae Y S, Garibay S J, Snurr R Q, Farha O K, Hupp J T, Nguyen S T. J. Mater. Chem. A 2014, 2:299.
[67] Yu C, Cowan M G, Noble R D, Zhang W. Chem. Commun. 2014, 50:5745.
[68] Marti A M, Perera S D, McBeath L D, Balkus K J. Langmuir 2013, 29:5927.
[69] Hu F, Szostak M. ChemCatChem 2015, 7:1061.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[8] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[9] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[10] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[11] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[12] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[13] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[14] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[15] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.