English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 757-770 DOI: 10.7536/PC220916 前一篇   后一篇

• 综述 •

可卡因免疫及适配体生物传感器

陈戈慧1, 马楠1, 于帅兵1, 王娇1, 孔金明1,*(), 张学记2   

  1. 1 南京理工大学环境与生物工程学院 南京 210094
    2 深圳大学医学部生物医学工程学院 深圳 518060
  • 收稿日期:2022-09-19 修回日期:2022-11-13 出版日期:2023-05-24 发布日期:2023-04-30
  • 基金资助:
    国家自然科学基金项目(21974068); 国家自然科学基金项目(21890740); 国家自然科学基金项目(21890742); 国家自然科学基金项目(9195401)

Immunity and Aptamer Biosensors for Cocaine Detection

Gehui Chen1, Nan Ma1, Shuaibing Yu1, Jiao Wang1, Jinming Kong1(), Xueji Zhang2   

  1. 1 School of Environmental and Biological Engineering, Nanjing University of Science and Technology,Nanjing 210094, China
    2 School of Biomedical Engineering, Shenzhen University Health Science Center,Shenzhen 518060, China
  • Received:2022-09-19 Revised:2022-11-13 Online:2023-05-24 Published:2023-04-30
  • Contact: * e-mail: j.kong@njust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21974068); National Natural Science Foundation of China(21890740); National Natural Science Foundation of China(21890742); National Natural Science Foundation of China(9195401)

由于长期滥用可卡因会对人体产生心律失常、心肌梗死、中风、高血压、主动脉僵硬等不良影响,可卡因已成为当今最危险和非法滥用的药物之一,传统的可卡因色谱分析方法存在耗时、样本处理繁琐和操作复杂等缺点。因此,改善传统可卡因分析方法对打击犯罪和发展医学具有一定的积极影响。由于生物传感器的准确性和便携性,基于免疫和适配体技术的生物传感器是检测可卡因的一个重要发展方向。在这篇综述中,主要讲述了近年来不同类型的可卡因生物传感器,涵盖了基于电化学、荧光、比色等方法在可卡因检测上的进展,对可卡因的免疫和适配体生物传感器进行了归纳和综述,并总结了可卡因传感器的优缺点和发展方向。

Cocaine has become one of the most dangerous and illicitly abused drugs today due to the adverse effects of long-term cocaine abuse, such as arrhythmia, myocardial infarction, stroke, hypertension and aortic stiffness. Traditional cocaine chromatographic analysis methods have disadvantages such as time-consuming, cumbersome sample processing and complicated operations. Therefore, improving cocaine detection methods has a certain positive impact on crime-fighting and medicine-developing. Due to the accuracy and portability of biosensors, immunological and aptamer technologies for specific capture of targets have become an important direction for cocaine detection. In this review, different types of cocaine biosensors in recent years are mainly described, covering the research progress of cocaine detection based on electrochemical, fluorescence, colorimetric and other methods. The immuno- and aptamer-based biosensors of cocaine are reviewed, the advantages, disadvantages and development directions of cocaine sensors are summarized.

Contents

1 Introduction

2 Immunosensors for cocaine detection

2.1 Labeled immunosensors

2.2 Label-free immunosensors

3 Aptasensors for cocaine detection

3.1 Fluorescent aptasensors

3.2 Colorimetric aptasensors

3.3 Electrochemical aptasensors

3.4 Other aptasensors

4 Conclusion and outlook

()
表1 不同可卡因免疫传感器及其检出限对比
Table 1 A comparison of different cocaine immunosensors and their limits of detection
图1 夹心式LFIA测试条的示意图
Fig. 1 Schematic representation of sandwich-type LFIA test strip
图2 SELEX流程的示意图
Fig. 2 Schematic illustration of SELEX procedure
图3 (a)亚甲基蓝标记的MAs可卡因传感器[46];(b)DFAs与可卡因的组装过程[47];(c)基于TFAs的荧光传感器[48]
Fig. 3 (a) Methylene blue-labeled MAs cocaine biosensor[46]; (b) DFAs and cocaine assembly process[47]; (c) Fluorescent biosensor based on TFAs[48]
表2 不同可卡因适配体传感器及其检出限对比
Table 2 A comparison of different cocaine aptasensors and their detection limits
Method Linear range (mol/L) Detection limit (mol/L) ref
Fluorescence 5×10-6 62
Fluorescence anisotropy 63
Fluorescence 0~1×10-5 5×10-8 (in 10% saliva) 64
Fluorescence 5×10-10~8×10-8 8.4×10-11 65
Fluorescence 0~1×10-10 5.4×10-13 66
Cas-12a based fluorescence 4.7×10-7~1.5×10-2 3.4×10-7 67
EWF-based fluorescence 1×10-5~5×10-3 1.05×10-5 68
Fluorescence 1×10-6~5×10-4 2.5×10-7 69
Fluorescence 1×10-7~1×10-4 4.6×10-9 72
Fluorescence 1×10-8~1×10-4 8×10-10 73
Colorimetric 8.25×10-9 mol (visual)
7.79×10-9 mol (camera)
75
Colorimetric 2×10-10~2.5×10-8 9.7×10-10 76
Colorimetric 1.32×10-8 mol (visual)
1.17×10-8 mol (camera)
77
Colorimetric 0~1×10-6 7.49×10-9 78
Colorimetric 1×10-9~1.5×10-7 5×10-10 79
Colorimetric 1×10-8~1.5×10-7 3.3×10-9 80
Colorimetric 2×10-9~1×10-7 4.4×10-10 81
Colorimetric 1×10-5 82
Colorimetric 1×10-5~5×10-3 5×10-5 (in urine)
2×10-4 (in sweat)
83
SWV 5×10-8~1×10-6 and 1×10-6~3.5×10-5 2.1×10-8 86
SWV 87
EIS/DPV 3.3×10-12~3.3×10-9 1.29×10-12 (EIS)
2.22×10-12 (DPV)
89
EIS 1×10-15~1×10-12 and 1×10-12~1×10-7 3.33×10-16 90
EIS 9×10-11~8.5×10-8 2.9×10-11 91
DPV 3.3×10-10~3.3×10-5 1×10-10 92
SWV 3.3×10-11~3.3×10-6 9×10-12 93
DPV 1×10-11~7×10-11 2.6×10-13 94
DPV 4×10-11~1.5×10-7 1.5×10-11 95
EMPAS 2×10-6~5×10-5 9×10-7 96
EMPAS 5×10-7~5×10-6 3×10-7 97
Interfacial capacitance sensing 1.45×10-14~1.45×10-11 7.8×10-15 98
FET 1×10-9 99
Conductance change 1×10-9~1×10-5 1×10-9 102
α-HL nanopore 5×10-8~1×10-4 5×10-8 103
Personal glucometer 1×10-8~6×10-7 5.2×10-9 104
LC optical sensor 1×10-9~1×10-5 1×10-9 106
LC optical sensor 1×10-10~1×10-5 108
LPFG 2.5×10-5~7.5×10-5 2.5×10-5 109
PIERS 5×10-9~1×10-5 5×10-9 110
ECL 1×10-10~1×10-7 6×10-11 111
图4 基于AuNPs-QD组合体荧光检测可卡因的示意图[72]
Fig. 4 Schematic diagram of fluorescence detection of cocaine based on AuNPs-QD combination[72]
图5 基于CBSAzymes的检测可卡因的原理图[82]
Fig. 5 Schematic diagram of cocaine detection based on CBSAzymes[82]
图6 AuNCs@Zr-MOF作为基底检测可卡因的示意图[89]
Fig. 6 Schematic diagram of AuNCs@Zr-MOF as a substrate to detect cocaine[89]
图7 LC微阵列薄膜检测可卡因的原理图[108]
Fig. 7 Schematic diagram of LC microarray film for detection of cocaine[108]
[1]
Roushani M, Shahdost-Fard F. Anal. Chim. Acta, 2015, 853: 214.

doi: 10.1016/j.aca.2014.09.031     URL    
[2]
Gay G R, Inaba D S, Sheppard C W, Newmeyer J A. Clin. Toxicol., 1975, 8(2): 149.

doi: 10.3109/15563657508988061     URL    
[3]
Johanson C E, Fischman M W. Pharmacol. Rev., 1989, 41(1): 3.
[4]
Mu S, Fantegrossi W E, Rusch N J. Hypertension, 2018, 71(4): 561.

doi: 10.1161/HYPERTENSIONAHA.118.10278     URL    
[5]
Shahdost-Fard F, Roushani M. Talanta, 2016, 154: 7.

doi: 10.1016/j.talanta.2016.03.055     pmid: 27154642
[6]
Yüksel B, Şen N. J. Res. Pharm., 2018, 22(1): 181.

doi: 10.1016/S1043-6618(09)80224-7     URL    
[7]
Ambach L, Menzies E, Parkin M C, Kicman A, Archer J R H, Wood D M, Dargan P I, Stove C. Drug Test. Anal., 2019, 11(5): 709.

doi: 10.1002/dta.2537     pmid: 30379417
[8]
Concheiro M, Lendoiro E, de Castro A, GÓnzalez-Colmenero E, Concheiro-Guisan A, Peñas-Silva P, Macias-Cortiña M, Cruz-Landeira A, LÓpez-Rivadulla M. Drug Test. Anal., 2017, 9(6): 898.

doi: 10.1002/dta.2087     pmid: 27595432
[9]
Janicka M, Kot-Wasik A, Namienśik J. Trac-Trend. Anal. Chem., 2010, 29(3): 209.

doi: 10.1016/j.trac.2009.12.005     URL    
[10]
Rycke E D, Stove C, Dubruel P, Saeger S D, Beloglazova N. Biosens. Bioelectron., 2020, 169: 112579.

doi: 10.1016/j.bios.2020.112579     URL    
[11]
Kulkarni M B, Ayachit N H, Aminabhavi T M. Biosensors, 2022, 12(7): 543.

doi: 10.3390/bios12070543     URL    
[12]
Catal T, Kul A, Atalay V E, Bermek H, Ozilhan S, Tarhan N. J. Power Sources, 2019, 414: 1.

doi: 10.1016/j.jpowsour.2018.12.078    
[13]
Asturias-Arribas L, Alonso-Lomillo M A, Domínguez-Renedo O, Arcos-Martínez M J. Talanta, 2013, 105: 131.

doi: 10.1016/j.talanta.2012.11.078     pmid: 23597999
[14]
Tappura K, Vikholm-Lundin I, Albers W M. Biosens. Bioelectron., 2007, 22(6): 912.

pmid: 16635567
[15]
Song C K, Oh E, Kang M S, Shin B S, Han S Y, Jung M, Lee E S, Yoon S Y, Sung M M, Ng W B, Cho N J, Lee H. Anal. Chim. Acta, 2018, 1027: 101.

doi: 10.1016/j.aca.2018.04.025     URL    
[16]
Kirschbaum K M, Musshoff F, Wilbert A, Röhrich J, Madea B. Forensic Sci. Int., 2011, 207(1/3): 66.

doi: 10.1016/j.forsciint.2010.09.002     URL    
[17]
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Trac-Trend. Anal. Chem., 2022, 152: 116605.

doi: 10.1016/j.trac.2022.116605     URL    
[18]
Abdelshafi N A, Panne U, Schneider R J. Talanta, 2017, 165: 619.

doi: S0039-9140(17)30005-X     pmid: 28153307
[19]
Abdelshafi N A, Bell J, Rurack K, Schneider R J. Drug Test. Anal., 2019, 11(3): 492.

doi: 10.1002/dta.2515     pmid: 30286276
[20]
Campbell J, Pollock N R, Sharon A, Sauer-Budge A F. Anal. Methods, 2015, 7(19): 8472.

doi: 10.1039/C5AY00264H     URL    
[21]
Zhang L, Li X, Li Y, Yu H. Analyst, 2021, 146(2): 538.

doi: 10.1039/D0AN01933J     URL    
[22]
Guo J, Chen S, Guo J, Ma X. J. Mater. Sci. Technol., 2021, 60: 90.

doi: 10.1016/j.jmst.2020.06.003     URL    
[23]
Koczula K M, Gallotta A. Essays Biochem., 2016, 60(1): 111.

doi: 10.1042/EBC20150012     URL    
[24]
Hu J, Wang S Q, Wang L, Li F, Pingguan-Murphy B, Lu T, Xu F. Biosens. Bioelectron., 2014, 54: 585.

doi: 10.1016/j.bios.2013.10.075     URL    
[25]
Mirica A C, Stan D, Chelcea I C, Mihailescu C M, Ofiteru A, Bocancia-Mateescu L A. Front. Bioeng. Biotech., 2022, 10: 922772.

doi: 10.3389/fbioe.2022.922772     URL    
[26]
Wu J, Dong M, Zhang C, Wang Y, Xie M, Chen Y. Sensors, 2017, 17(6): 1286.

doi: 10.3390/s17061286     URL    
[27]
Ghorbanizamani F, Moulahoum H, Timur S. Ieee Sens. J., 2022, 22(2): 1146.

doi: 10.1109/JSEN.2021.3133599     URL    
[28]
Finšgar M, Majer D, Maver U, Maver T. Sensors, 2018, 18(11): 3976.

doi: 10.3390/s18113976     URL    
[29]
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Chemosphere, 2021, 278: 130462.

doi: 10.1016/j.chemosphere.2021.130462     URL    
[30]
Sanli S, Moulahoum H, Ugurlu O, Ghorbanizamani F, Gumus Z P, Evran S, Coskunol H, Timur S. Talanta, 2020, 217: 121111.

doi: 10.1016/j.talanta.2020.121111     URL    
[31]
Paul M, Tannenberg R, Tscheuschner G, Ponader M, Weller M G. Biosensors, 2021, 11(9): 313.

doi: 10.3390/bios11090313     URL    
[32]
Sun Y S, Landry J P, Fei Y Y, Zhu X D, Luo J T, Wang X B, Lam K S. Langmuir, 2008, 24(23): 13399.

doi: 10.1021/la802097z     pmid: 18991423
[33]
Juzgado A, Soldà A, Ostric A, Criado A, Valenti G, Rapino S, Conti G, Fracasso G, Paolucci F, Prato M. J. Mater. Chem. B, 2017, 5(32): 6681.

doi: 10.1039/c7tb01557g     pmid: 32264431
[34]
Sengel T Y, Guler E, Gumus Z P, Aldemir E, Coskunol H, Akbulut H, Goen Colak D, Cianga I, Yamada S, Timur S, Endo T, Yagci Y. Sensor. Actuat. B-Chem., 2017, 246: 310.

doi: 10.1016/j.snb.2017.02.087     URL    
[35]
Tran R J, Sly K L, Conboy J C. Anal. Chem., 2020, 92(19): 13163.

doi: 10.1021/acs.analchem.0c02286     URL    
[36]
Qi S, Duan N, Khan I M, Dong X, Zhang Y, Wu S, Wang Z. Biotechnol. Adv., 2022, 55: 107902.

doi: 10.1016/j.biotechadv.2021.107902     URL    
[37]
Ellington A D, Szostak J W. Nature, 1990, 346(6287): 818.

doi: 10.1038/346818a0    
[38]
Jiang B, Wang M, Chen Y, Xie J, Xiang Y. Biosens. Bioelectron., 2012, 32(1): 305.

doi: 10.1016/j.bios.2011.12.010     URL    
[39]
Qing M, Sun Z, Wang L, Du S, Zhou J, Tang Q, Luo H, Li N. Sensor. Actuat. B-Chem., 2021, 348: 130713.

doi: 10.1016/j.snb.2021.130713     URL    
[40]
Chen X, Feng Y, Chen H, Zhang Y, Wang X, Zhou N. Sensors, 2022, 22(7): 2425.

doi: 10.3390/s22072425     URL    
[41]
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Trac-Trend. Anal. Chem., 2022, 157: 116738.

doi: 10.1016/j.trac.2022.116738     URL    
[42]
Soni S, Jain U, Burke D H, Chauhan N. J. Electroanal. Chem., 2022, 910: 116128.

doi: 10.1016/j.jelechem.2022.116128     URL    
[43]
Celikbas E, Balaban S, Evran S, Coskunol H, Timur S. Biosensors, 2019, 9(4): 118.

doi: 10.3390/bios9040118     URL    
[44]
Bunka D, Stockley P. Nat. Rev. Microbiol., 2006, 4: 588.

doi: 10.1038/nrmicro1458    
[45]
Moradi R, Khalili N P, Septiani N L W, Liu C, Doustkhah E, Yamauchi Y, Rotkin S V. Small, 2022, 18(10): 2104847.

doi: 10.1002/smll.v18.10     URL    
[46]
Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J, Plaxco K W. J. Am. Chem. Soc., 2006, 128(10): 3138.

doi: 10.1021/ja056957p     URL    
[47]
Morris F D, Peterson E M, Heemstra J M, Harris J M. Anal. Chem., 2018, 90(21): 12964.

doi: 10.1021/acs.analchem.8b03637     URL    
[48]
Van Riesen A J, Le J, Slavkovic S, Churcher Z R, Shoara A A, Johnson P E, Manderville R A. ACS Appl. Bio Mater., 2021, 4(9): 6732.

doi: 10.1021/acsabm.1c00431     URL    
[49]
Ebrahimi M, Hamzeiy H, Barar J, Barzegari A, Omidi Y. Sensor Lett., 2013, 11(3): 566.

doi: 10.1166/sl.2013.2824     URL    
[50]
Stojanovic M N, de Prada P, Landry D W. J. Am. Chem. Soc., 2001, 123(21): 4928.

pmid: 11457319
[51]
Freeman R, Sharon E, Tel-Vered R, Willner I. J. Am. Chem. Soc., 2009, 131(14): 5028.

doi: 10.1021/ja809496n     pmid: 19309141
[52]
Zhang D, Sun C J, Zhang F T, Xu L, Zhou Y L, Zhang X X. Biosens. Bioelectron., 2012, 31(1): 363.

doi: 10.1016/j.bios.2011.10.046     URL    
[53]
Li X, Qi H, Shen L, Gao Q, Zhang C. Electroanal., 2008, 20(13): 1475.

doi: 10.1002/(ISSN)1521-4109     URL    
[54]
He J, Wu Z, Zhou H, Wang H, Jiang J, Shen G, Yu R. Anal. Chem., 2010, 82(4): 1358.

doi: 10.1021/ac902416u     URL    
[55]
Zhang J, Wang L, Pan D, Song S, Boey F Y, Zhang H, Fan C. Small, 2008, 4(8): 1196.

doi: 10.1002/smll.200800057     pmid: 18651718
[56]
Li Y, Ji X, Liu B. Anal. Bioanal. Chem., 2011, 401: 213.

doi: 10.1007/s00216-011-5064-6     URL    
[57]
Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R. Chem-Eur. J., 2008, 14(27): 8374.

doi: 10.1002/chem.v14:27     URL    
[58]
Bilge S, Dogan-Topal B, Gürbüz M M, Yücel A, Sınağ A, Ozkan S A. Trac-Trend Anal. Chem., 2022, 157: 116768.

doi: 10.1016/j.trac.2022.116768     URL    
[59]
Stokes G G. Philos. T. R. Soc. B, 1852, 142: 463.
[60]
Zhao Q, Tao J, Uppal J S, Peng H, Wang H, Le X C. Trac-Trend. Anal. Chem., 2019, 110: 401.

doi: 10.1016/j.trac.2018.11.018     URL    
[61]
Jameson D M, Ross J A. Chem. Rev., 2010, 110(5): 2685.

doi: 10.1021/cr900267p     pmid: 20232898
[62]
Liu Y, Zhao Q. Anal. Bioanal. Chem., 2017, 409(16): 3993.

doi: 10.1007/s00216-017-0349-z     URL    
[63]
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo M A, Faure P, Ravelet C, Peyrin E. Angew. Chem., 2021, 133(22): 12454.

doi: 10.1002/ange.v133.22     URL    
[64]
Yu H, Canoura J, Guntupalli B, Lou X, Xiao Y. Chem. Sci., 2017, 8(1): 131.

doi: 10.1039/C6SC01833E     URL    
[65]
Abnous K, Danesh N M, Ramezani M, Taghdisi S M, Emrani A S. Anal. Methods, 2018, 10(26): 3232.

doi: 10.1039/C8AY00755A     URL    
[66]
Gao L, Wang H, Deng Z, Xiang W, Shi H, Xie B, Shi H,. New J. Chem., 2020, 44(6): 2571.

doi: 10.1039/C9NJ05147C     URL    
[67]
Zhao X, Li S, Liu G, Wang Z, Yang Z, Zhang Q, Liang M, Liu J, Li Z, Tong Y, Zhu G, Wang X, Jiang L, Wang W, Tan G, Zhang L. Sci. Bull., 2021, 66(1): 69.

doi: 10.1016/j.scib.2020.09.004     URL    
[68]
Qiu Y, Tang Y, Li B, He M. Roy. Soc. Open Sci., 2018, 5(10): 180821.
[69]
Wu Z, Zhou H, Han Q, Lin X, Han D, Li X. Analyst, 2020, 145(13): 4664.

doi: 10.1039/D0AN00675K     URL    
[70]
Liu M, Qiu J G, Ma F, Zhang C Y. Wires Nanomed. Nanobi., 2021, 13(5): 1716.
[71]
Adegoke O, Daeid N N. J. Photoch. Photobio. A., 2022, 426: 113755.

doi: 10.1016/j.jphotochem.2021.113755     URL    
[72]
Adegoke O, Pereira-Barros M A, Zolotovskaya S, Abdolvand A, Daeid N N. Microchim. Acta, 2020, 187(2): 104.

doi: 10.1007/s00604-019-4101-6    
[73]
Burton K, Daeid N N, Adegoke O. J. Photoch. Photobio. A., 2022, 433: 114131.

doi: 10.1016/j.jphotochem.2022.114131     URL    
[74]
Ajay Piriya V S, Joseph P, Kiruba Daniel S C G, Lakshmanan S, Kinoshita T, Muthusamy S. Mater. Sci. Eng. C, 2017, 78: 1231.

doi: 10.1016/j.msec.2017.05.018     URL    
[75]
Wang L, Musile G, McCord B R. Electrophoresis, 2017, 39(3): 470.

doi: 10.1002/elps.v39.3     URL    
[76]
Sanli S, Moulahoum H, Ghorbanizamani F, Celik E G, Timur S. Biomed. Microdevices, 2020, 22(3): 51.

doi: 10.1007/s10544-020-00507-2    
[77]
Wang L, McCord B. Anal. Biochem., 2020, 595: 113619.

doi: 10.1016/j.ab.2020.113619     URL    
[78]
Gao L, Xiang W, Deng Z, Shi K, Wang H, Shi H. Nanomedicine, 2020, 15(4): 325.

doi: 10.2217/nnm-2019-0046     URL    
[79]
Mao K, Yang Z, Li J, Zhou X, Li X, Hu J. Talanta, 2017, 175: 338.

doi: 10.1016/j.talanta.2017.07.011     URL    
[80]
Mao K, Ma J, Li X, Yang Z. Sci. Total Environ., 2019, 688: 771.

doi: 10.1016/j.scitotenv.2019.06.325     URL    
[81]
Abnous K, Danesh N M, Ramezani M, Taghdisi S M, Emrani A S. Anal. Chim Acta, 2018, 1020: 110.

doi: 10.1016/j.aca.2018.02.066     URL    
[82]
Luo Y, Yu H, Alkhamis O, Liu Y, Lou X, Yu B, Xiao Y. Anal. Chem., 2019, 91(11): 7199.

doi: 10.1021/acs.analchem.9b00507     URL    
[83]
Jing L, Xie C, Li Q, Yao H, Yang M, Li H, Xia F, Li S. J. Anal. Test., 2022, 6(2): 120.

doi: 10.1007/s41664-022-00228-w    
[84]
Yan X, Cao Z, Lau C, Lu J. Analyst, 2010, 135(9): 2400.

doi: 10.1039/c0an00163e     URL    
[85]
Sharon E, Freeman R, Tel-Vered R, Willner I. Electroanalysis, 2009, 21(11): 1291.

doi: 10.1002/elan.v21:11     URL    
[86]
Tavakkoli N, Soltani N, Mohammadi F. RSC Adv., 2019, 9(25): 14296.

doi: 10.1039/c9ra01292c    
[87]
Taylor I M, Du Z, Bigelow E T, Eles J R, Horner A R, Catt K A, Weber S G, Jamieson B G, Cui X T. J. Mater. Chem. B, 2017, 5(13): 2445.

doi: 10.1039/C7TB00095B     pmid: 28729901
[88]
Chamorro-Garcia A, Ortega G, Mariottini D, Green J, Ricci F, Plaxco K W. Chem. Commun., 2021, 57(88): 11693.

doi: 10.1039/D1CC04557A     URL    
[89]
Su F, Zhang S, Ji H, Zhao H, Tian J, Liu C, Zhang Z, Fang S, Zhu X, Du M. ACS Sens., 2017, 2(7): 998.

doi: 10.1021/acssensors.7b00268     URL    
[90]
Roushani M, Shahdost-Fard F. Microchim. Acta, 2018, 185(4): 214.

doi: 10.1007/s00604-018-2709-6    
[91]
Hashemi P, Bagheri H, Afkhami A, Ardakani Y H, Madrakian T. Anal. Chim. Acta, 2017, 996: 10.

doi: S0003-2670(17)31212-6     pmid: 29137703
[92]
Wang J, Liu J, Wang M, Qiu Y, Kong J, Zhang X. Anal. Chim. Acta, 2021, 1184: 339041.

doi: 10.1016/j.aca.2021.339041     URL    
[93]
Wang J, Qiu Y, Li L, Qi X, An B, Ma K, Kong J, Zhang X. Microchem. J., 2022, 181: 107714.

doi: 10.1016/j.microc.2022.107714     URL    
[94]
Azizi S, Gholivand M B, Amiri M, Manouchehri I, Moradian R. J. Electroanal. Chem., 2022, 907: 116062.

doi: 10.1016/j.jelechem.2022.116062     URL    
[95]
Abnous K, Abdolabadi A K, Ramezani M, Alibolandi M, Alinezhad Nameghi M, Zavvar T, Khoshbin Z, Lavaee P, Taghdisi S M, Danesh N M. Talanta, 2022, 241: 123276.

doi: 10.1016/j.talanta.2022.123276     URL    
[96]
Neves M A D, Blaszykowski C, Bokhari S, Thompson M. Biosens. Bioelectron., 2015, 72: 383.

doi: 10.1016/j.bios.2015.05.038     URL    
[97]
Neves M A D, Blaszykowski C, Thompson M. Anal. Chem., 2016, 88(6): 3098.

doi: 10.1021/acs.analchem.5b04010     URL    
[98]
Oueslati R, Cheng C, Wu J, Chen J. Biosens. Bioelectron., 2018, 108: 103.

doi: S0956-5663(18)30156-8     pmid: 29524683
[99]
Chen X, Zhou C, Guo X. Chin. J. Chem., 2019, 37(9): 897.

doi: 10.1002/cjoc.v37.9     URL    
[100]
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Talanta, 2020, 219: 121213.

doi: 10.1016/j.talanta.2020.121213     URL    
[101]
Laucirica G, Toum Terrones Y, CayÓn V, Cortez M L, Toimil-Molares M E, Trautmann C, MarmisollÉ W, Azzaroni O. Trac-Trend. Anal. Chem., 2021, 144: 116425.

doi: 10.1016/j.trac.2021.116425     URL    
[102]
Wang J, Hou J, Zhang H, Tian Y, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(2): 2033.

doi: 10.1021/acsami.7b16539     URL    
[103]
Rauf S, Zhang L, Ali A, Liu Y, Li J. ACS Sens., 2017, 2(2): 227.

doi: 10.1021/acssensors.6b00627     URL    
[104]
Li G, Tang D. J. Mater. Chem. B, 2017, 5(28): 5573.

doi: 10.1039/C7TB00670E     URL    
[105]
Luan C, Luan H, Luo D. Micromachines, 2020, 11(2): 176.

doi: 10.3390/mi11020176     URL    
[106]
Wang S, Zhang G, Chen Q, Zhou J, Wu Z. Microchim. Acta, 2019, 186(11): 724.

doi: 10.1007/s00604-019-3855-1    
[107]
Xiao F, Tan H, Wu Y, Liao S, Wu Z, Shen G, Yu R. Analyst, 2016, 141(10): 2870.

doi: 10.1039/C6AN00504G     URL    
[108]
Wang S, Qi Y, Chen Q, Zhang G, Liu B, Xiao F, Zhou J, Wu Z, Yu R. Anal. Chem., 2021, 93(34): 11887.

doi: 10.1021/acs.analchem.1c02920     URL    
[109]
Celebanska A, Chiniforooshan Y, Janik M, Mikulic P, Sellamuthu B, Walsh R, Perreault J, Bock W J. Opt. Lett., 2019, 44(10): 2482.

doi: 10.1364/OL.44.002482     pmid: 31090712
[110]
Man T, Lai W, Xiao M, Wang X, Chandrasekaran A R, Pei H, Li L. Biosens. Bioelectron., 2020, 147: 111742.

doi: 10.1016/j.bios.2019.111742     URL    
[111]
Wang X, Zhang T, Wang B, Qi H, Zhang C. J. Electrochem., 2019, 25(2): 223.
[112]
Oliveira N C L, El Khoury G, Versnel J M, Moghaddam G K, Leite L S, Lima-Filho J L, Lowe C R. Sensor. Actuat. B-Chem., 2018, 270: 216.

doi: 10.1016/j.snb.2018.05.009     URL    
[113]
Chantada-Vazquez M P, de-Becerra-Sánchez C, Fernández-del-Río A, Sánchez-González J, Bermejo A M, Bermejo-Barrera P, Moreda-Piñeiro A. Talanta, 2018, 181: 232-238.

doi: S0039-9140(18)30022-5     pmid: 29426506
[114]
Florea A, Cowen T, Piletsky S, De Wael K. Talanta, 2018, 186: 362.

doi: S0039-9140(18)30419-3     pmid: 29784374
[115]
Florea A, Cowen T, Piletsky S, De Wael K. Analyst, 2019, 144(15): 4639.

doi: 10.1039/c9an00618d     pmid: 31250860
[1] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[2] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[3] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[4] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[5] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[6] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[7] 梁晨希, 曹立新*, 张跃娟, 闫培生. 海洋毒素电化学生物传感器[J]. 化学进展, 2018, 30(7): 1028-1034.
[8] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[9] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[10] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[11] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[12] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[13] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[14] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[15] 张茜, 朱艳红, 徐辉碧, 杨祥良. 多功能纳米佐剂在肿瘤疫苗中的应用[J]. 化学进展, 2015, 27(2/3): 275-285.
阅读次数
全文


摘要

可卡因免疫及适配体生物传感器