English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 1028-1034 DOI: 10.7536/PC171019 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

海洋毒素电化学生物传感器

梁晨希, 曹立新*, 张跃娟, 闫培生   

  1. 哈尔滨工业大学(威海)海洋科学与技术学院 威海 264209
  • 收稿日期:2017-10-19 修回日期:2018-02-02 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 曹立新 E-mail:caolixin668@aliyun.com
  • 基金资助:
    国家自然科学基金项目(No.21273056)资助

Electrochemical Biosensors for Marine Toxins Analysis

Chenxi Liang, Lixin Cao*, Yuejuan Zhang, Peisheng Yan   

  1. School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
  • Received:2017-10-19 Revised:2018-02-02 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21273056).
由藻类产生的海洋毒素对人类健康和环境安全构成了较大威胁,对其进行快速准确的检测是减小海洋毒素危害的有效手段之一。电化学生物传感器具有快速简便、灵敏度高、检测限低和成本低等特点,为检测海洋毒素提供了新的技术途径。目前,应用于海洋毒素检测中的电化学生物传感器主要有免疫传感器、酶传感器和DNA传感器等。本文综述了迄今为止国内外海洋毒素电化学生物传感器研究所取得的成果,并对其当前研究存在的问题和未来发展趋势进行探讨和展望。
Marine toxins produced by harmful algae have a significant threat to human health and environmental safety. In order to reduce the risk of marine toxins, rapid and accurate detection of the toxins is one of the effective methods. Electrochemical biosensors provide a new technique for accurate marine toxins analysis due to their characteristics of time saving, simplicity, high sensitivity, low detection limit, and low cost. Nowadays, the electrochemical biosensors used in marine toxin detection mainly include immunosensors, enzyme sensors and DNA sensors. In this article, the achievements on marine toxin electrochemical biosensor made so far are reviewed. Meanwhile, the current problems and development trend of marine toxins biosensors are discussed and prospected.
Contents
1 Introduction
2 Physicochemical properties and toxicity of marine toxins
2.1 Diarrheic shellfish poisoning
2.2 Neurologic shellfish poisoning
2.3 Amnesic shellfish poisoning
2.4 Paralytic shellfish poisoning

中图分类号: 

()
[1] Zendong Z, Herrenknecht C, Abadie E, Brissard C, Tixier C, Mondeguer F, Séchet V, Amzil Z, Hess P. Toxicon, 2014, 91:57.
[2] Garthwaite I. Trends in Food Science & Technology, 2000, 11(7):235.
[3] Mos L. Environmental Toxicology and Pharmacology, 2001, 9(3):79.
[4] Lefebvre K A, Robertson A. Toxicon, 2010, 56(2):218.
[5] Lin W F, Hwang D F. Journal of Food and Drug Analysis, 2012, 20(4):764.
[6] Trainer V, Moore L, Bill B, Adams N, Harrington N, Borchert J, Da Silva D, Eberhart B. Marine Drugs, 2013, 11(6):1815.
[7] Grattan L M, Holobaugh S, Morris J G. Harmful Algae, 2016, 57:2.
[8] McPartlin D A, Loftus J H, Crawley A S, Silke J, Murphy C S, O'Kennedy R J. Current Opinion in Biotechnology, 2017, 45:164.
[9] 吴厚铭(Wu H M). 化学进展(Progress in Chemistry), 1990, 2(2):26.
[10] Kerbrat A, Darius H T, Pauillac S, Chinain M, Laurent D. Marine Pollution Bulletin, 2010, 61(7/12):360.
[11] Louppis A P, Badeka A V, Katikou P, Paleologos E K, Kontominas M G. Toxicon, 2010, 55(4):724.
[12] Maroulis M, Monemvasios I, Vardaka E, Rigas P. Journal of Chromatography B, 2008, 876(2):245.
[13] Prassopoulou E, Katikou P, Georgantelis D, Kyritsakis A. Toxicon, 2009, 53(2):214.
[14] Mafra L L, L Ger C, Bates S S, Quilliam M A. Journal of Chromatography A, 2009, 1216(32):6003.
[15] Lajeunesse A, Segura P A, Gélinas M, Hudon C, Thomas K, Quilliam M A, Gagnon C. Journal of Chromatography A, 2012, 1219:93.
[16] Bacchiocchi S, Siracusa M, Ruzzi A, Gorbi S, Ercolessi M, Cosentino M A, Ammazzalorso P, Orletti R. Toxicon, 2015, 108:115.
[17] Kreuzer M P, O'Sulliva C K, Guilbault G G. Analytical Chemistry, 1999, 71(19):4198.
[18] Wharton R E, Feyereisen M C, Gonzalez A L, Abbott N L, Hamelin E I, Johnson R C. Toxicon, 2017, 133:110.
[19] Maucher J M, Ramsdell J S. Toxicon, 2005, 45(5):607.
[20] Dorantes-Aranda J J, Campbell K, Bradbury A, Elliott C T, Harwood D T, Murray S A, Ugalde S C, Wilson K, Burgoyne M, Hallegraeff G M. Toxicon, 2017, 125:110.
[21] Zou L, Tian Y L, Zhang X, Fang J R, Hu N, Wang P. Sensors and Actuators B:Chemical, 2017, 238:1173.
[22] Camp S M N, Prieto-Sim N B, Marty J. Talanta, 2007, 72(3):884.
[23] Zeng Y, Zhu Z H, Du D, Lin Y H. Journal of Electroanalytical Chemistry, 2016, 781:147.
[24] Reverté L, Prieto-Simón B, Campàs M. Analytica Chimica Acta, 2016, 908:8.
[25] Sassolas A, Hayat A, Catanante G L, Marty J. Talanta, 2013, 105:306.
[26] Lu S Y, Lin C, Li Y, Zhou Y S, Meng X M, Yu S Y, Li Z H, Li L, Ren H L, Liu Z S. Analytical Biochemistry, 2012, 422(2):59.
[27] Creppy E E, Traoré A, Baudrimont I, Cascante M, Carratú M. Toxicology, 2002, 181/182:433.
[28] Cocilova C C, Milton S L. Aquatic Toxicology, 2016, 180:115.
[29] Gold E P, Jacocks H M, Bourdelais A J, Baden D G. Harmful Algae, 2013, 26:12.
[30] Saeed A F, Awan S A, Ling S M, Wang R Z, Wang S H. Algal Research, 2017, 24:97.
[31] Bouchouicha-Smida D, Lundholm N, Sahraoui I S, Lambert C, Mabrouk H H, Hlaili A S. Estuarine, Coastal and Shelf Science, 2015, 165:270.
[32] Cho Y, Tsuchiya S, Yoshioka R, Omura T, Konoki K, Oshima Y, Yotsu-Yamashita M. Journal of Chromatography A, 2016, 1474:109.
[33] Wiese M, D Agostino P M, Mihali T K, Moffitt M C, Neilan B A. Marine Drugs, 2010, 8(7):2185.
[34] Knaack J S, Porter K A, Jacob J T, Sullivan K, Forester M, Wang R Y, Trainer V L, Morton S, Eckert G, McGahee E, Thomas J, McLaughlin J, Johnson R C. Harmful Algae, 2016, 57:45.
[35] Adams N G, Robertson A, Grattan L M, Pendleton S, Roberts S, Tracy J K, Trainer V L. Harmful Algae, 2016, 57:26.
[36] Hossen V, Soliño L, Leroy P, David E, Velge P, Dragacci S, Krys S, Flores Quintana H, Diogène J. Environmental Research, 2015, 143:100.
[37] Amzil Z, Sibat M, Royer F, Savar V R. Toxicon, 2008, 52(1):39.
[38] Meyer L, Capper A, Carter S, Simpfendorfer C. Toxicon, 2016, 119:234.
[39] Lvarez G, Uribe E, Valos P, Mari O C, Blanco J. Toxicon, 2010, 55(2/3):638.
[40] Furey A, O'Doherty S, O'Callaghan K, Lehane M, James K J. Toxicon, 2010, 56(2):173.
[41] Magdalena A B, Lehane M, Krys S, Fernández M L, Furey A, James K J. Toxicon, 2003, 42(1):105.
[42] 李庆川(Li Q C), 曹立新(Cao L X), 胡海峰(Hu H F), 王凯(Wang K), 闫培生(Yan P S). 化学进展(Progress in Chemistry), 2014, 26(4):657.
[43] Hayat A, Barthelmebs L, Sassolas A, Marty J. Talanta, 2011, 85(1):513.
[44] Eissa S, Zourob M. Nanoscale, 2012, 4(23):7593.
[45] 郭萌萌(Guo M M), 吴海燕(Wu H Y), 李兆新(Li Z X), 薛瑞宇(Xue R Y), 谭志军(Tan Z J), 翟毓秀(Zhai Y X), 沈国励(Shen G L). 分析测试学报(Journal of Instrumental Analysis), 2014, 33(2):161.
[46] Hayat A, Barthelmebs L, Marty J. Analytica Chimica Acta, 2011, 690(2):248.
[47] Tang Z X, Ma Z F. Biosensors and Bioelectronics, 2017, 98:100.
[48] Mohamed H M. TrAC Trends in Analytical Chemistry, 2016, 82:1.
[49] Micheli L, Radoi A, Guarrina R, Massaud R, Bala C, Moscone D, Palleschi G. Biosensors and Bioelectronics, 2004, 20(2):190.
[50] Campàs M, de la Iglesia P, Le Berre M, Kane M, Diogène J, Marty J. Biosensors and Bioelectronics, 2008, 24(4):716.
[51] Kumar S, Ahlawat W, Kumar R, Dilbaghi N. Biosensors and Bioelectronics, 2015, 70:498.
[52] Pingarrón J M, Yáñez-Sedeño P, González-Cortés A. Electrochimica Acta, 2008, 53(19):5848.
[53] Tang D P, Tang J, Su B L, Chen G N. Biosensors and Bioelectronics, 2011, 26(5):2090.
[54] Lin Y X, Zhou Q, Lin Y P, Lu M H, Tang D P. Analytica Chimica Acta, 2015, 887:67.
[55] Jamshaid T, Neto E T T, Eissa M M, Zine N, Kunita M H, El-Salhi A E, Elaissari A. TrAC Trends in Analytical Chemistry, 2016, 79:344.
[56] Wang T, Zhou Y, Lei C, Luo J, Xie S R, Pu H Y. Biosensors and Bioelectronics, 2017, 90:418.
[57] Wang X, Niessner R, Tang D, Knopp D. Analytica Chimica Acta, 2016, 912:10.
[58] Zhang B, Hou L, Tang D, Liu B, Li J, Chen G. Journal of Agricultural & Food Chemistry, 2012, 60(36):8974.
[59] Tang J, Hou L, Tang D P, Zhou J, Wang Z P, Li J R, Chen G N. Biosensors and Bioelectronics, 2012, 38(1):86.
[60] Dominguez R B, Hayat A, Sassolas A, Alonso G A, Munoz R, Marty J. Talanta, 2012, 99:232.
[61] Hayat A, Barthelmebs L, Sassolas A, Marty J. Analytica Chimica Acta, 2012, 724:92.
[62] Leonardo S, Rambla-Alegre M, Samdal I A, Miles C O, Kilcoyne J, Diogène J, O'Sullivan C K, Campàs M N. Biosensors and Bioelectronics, 2017, 92:200.
[63] Bossi A, Piletsky S A, Righetti P G, Turner A P. J. Chromatogr. A, 2000, 892(1/2):143.
[64] Zhang X, Zhang Z. Journal of Food Composition and Analysis, 2012, 28(1):61.
[65] Zhang X W, Zhang Z X. Toxicon, 2012, 59(6):626.
[66] Zhang Z W, Zhang C X, Luan W, Li X, Liu Y, Luo X. Analytica Chimica Acta, 2015, 888:27.
[67] Zhang Z X, Liu Y, Zhang C Y, Luan W X. Toxicon, 2015, 96:89.
[68] Prodromidis M I. Electrochimica Acta, 2010, 55(14):4227.
[69] Guan J G, Miao Y Q, Zhang Q J. Journal of Bioscience and Bioengineering, 2004, 97(4):219.
[70] Hu H F, Cao L X, Li Q C, Ma K, Yan P S, Kirk D W. RSC Advances, 2015, 5(68):55209.
[71] Wu N N, Cao L X, Yan P S, Wang M H. Advanced Materials Research, 2011, 322:385.
[72] Wang M H, Cao L X, Yan P S, Wu N N. International Journal of Electrochemical Science, 2012, 7(9):7927.
[73] Li X L, Cao L X, Zhang Y J, Yan P S, Kirk D W. Electrochimica Acta, 2017, 247(Supplement C):1052.
[74] Hayat A, Barthelmebs L, Marty J. Sensors and Actuators B:Chemical, 2012, 171/172:810.
[75] Zhou J, Qiu X X, Su K Q, Xu G X, Wang P. Sensors and Actuators B:Chemical, 2016, 235:170.
[76] 刘佳(Liu J),殷立峰(Yin L F),代云容(Dai Y R),江帆(Jiang F),牛军峰(Niu J F). 化学进展(Progress in Chemistry), 2012, 24(1):131.
[77] Hamada-Sato N, Minamitani N, Inaba Y, Nagashima Y, Kobayashi T, Imada C, Watanabe E. Sensors & Materials, 2004, 16(2):99.
[78] Campàs M, Marty J. Analytica Chimica Acta, 2007, 605(1):87.
[79] Diculescu V C, Chiorcea-Paquim A, Oliveira-Brett A M. TrAC Trends in Analytical Chemistry, 2016, 79:23.
[80] Nguyet N T, Hai Yen L T, Van Thu V, Lan H, Trung T, Vuong P H, Tam P D. Journal of Physics and Chemistry of Solids, 2018, 115:18.
[81] Ribovski L, Zucolotto V, Janegitz B C. Microchemical Journal, 2017, 133:37.
[82] Sampson T. World Patent Information, 2003, 25(2):123.
[83] 郑静(Zheng J),何品刚(He P G),方禹之(Fang Y Z). 化学进展(Progress in Chemistry), 2009, 21(4):732.
[84] Eissa S, Ng A, Siaj M, Tavares A C, Zourob M. Analytical Chemistry, 2013, 85(24):11794.
[85] Eissa S, Siaj M, Zourob M. Biosensors and Bioelectronics, 2015, 69:148.
[1] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.
[2] 吴一萍, 郭良宏. DNA损伤的光电化学传感器检测[J]. 化学进展, 2014, 26(01): 1-9.
[3] 刘佳, 殷立峰, 代云容, 江帆, 牛军峰. 电化学酶传感器在环境污染监测中的应用[J]. 化学进展, 2012, 24(01): 131-143.
[4] 韦明元,郭良宏. 环境污染物的免疫传感检测方法进展*[J]. 化学进展, 2009, 21(0203): 492-502.
阅读次数
全文


摘要

海洋毒素电化学生物传感器