English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1573-1583 DOI: 10.7536/PC180742 前一篇   后一篇

• 综述 •

金属配合物在肿瘤化学免疫治疗中的应用前景

孙悦文1, 金素星1, 王晓勇1*, 郭子建2   

  1. 1. 南京大学生命科学学院 医药生物技术国家重点实验室 南京 210023;
    2. 南京大学化学化工学院 配位化学国家重点实验室 南京 210023
  • 收稿日期:2018-07-31 修回日期:2018-08-22 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 王晓勇 E-mail:boxwxy@nju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31570809)资助

Application Prospect of Metal Complexes in Chemoimmunotherapy of Tumors

Yuewen Sun1, Suxing Jin1, Xiaoyong Wang1*, Zijian Guo2   

  1. 1. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China;
    2. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2018-07-31 Revised:2018-08-22 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 31570809).
肿瘤化学免疫治疗是免疫疗法与化学疗法相结合通过协同作用治疗肿瘤的一种新方法。以铂类药物为代表的金属药物是一类重要的化学抗肿瘤药物,其作用机理是与肿瘤细胞DNA形成交联物并阻止其复制;但是,这类药物存在严重的毒性和耐药性问题。近年来发现有些金属配合物在产生细胞毒性的同时,也通过多种机制参与机体的免疫调节过程,其中以诱导免疫原性细胞死亡(ICD)最为常见。本文简要介绍了肿瘤化学免疫治疗的基本概念以及与免疫抑制有关的肿瘤微环境,概述了金属配合物的免疫活性和调节免疫过程的基本原理,并以铂类药物为例总结了金属配合物调节免疫过程的可能途径,最后列举了若干具有ICD诱导潜力和其他免疫调节功能的非铂类金属配合物,指出了目前化学免疫治疗存在的问题和未来的应用潜力。化学治疗与免疫治疗结合既可以利用机体免疫系统增强金属配合物的抗肿瘤效果,又可以减少药物剂量,降低毒副作用,是设计金属抗肿瘤药物的新方向之一。
Tumor chemoimmunotherapy is a new method for the treatment of tumors through the combination of immunotherapy and chemotherapy taking advantage of synergistic effect. Metal drugs, represented by platinum agents, are important chemotherapeutic antitumor drugs with cross-linking DNA and preventing DNA replication as the mechanism of action. Nevertheless, these drugs have severe general toxicity and drug resistance. In recent years it was found that in addition to producing cytotoxicity, some metal complexes are involved in the immunomodulation by various mechanisms, including the most common induction of immunogenic cell death (ICD). This review introduces the basic concepts of tumor chemoimmunotherapy and the tumor microenvironment related to immunosuppression, outlines the immune activities and basic principles for immunomodulation of metal complexes like those of platinum. Finally, some non-platinum metal complexes with ICD-inducing potentials and other immunomodulating functions are described, and the existing problems and application potential of chemoimmunotherapy in the future are indicated. The combination of chemotherapy and immunotherapy not only makes use of the human immune system to enhance the antitumor effect of metal complexes, but also reduces the dose and toxic side effects of drugs, and therefore is one of the new directions for the design of metal-based antitumor drugs.
Contents
1 Introduction
1.1 Tumor immunotherapy and chemotherapy
1.2 Immunosuppressive tumor microenvironment
2 Metal complexes and chemoimmunotherapy
2.1 Immunocompetence of metal complexes
2.2 Immunomodulation effect of metal complexes
2.3 Immunogenic cell death
3 Chemoimmunotherapeutic effect of platinum-based drugs
3.1 Potential pathways for platinum-based drugs participating in immunomodulation
3.2 Platinum complexes with ICD-inducing effect
3.3 Chemoimmunotherapeutic platinum complexes
3.4 Combination of platinum-based drugs with other drugs for chemoimmunotherapy
4 Immunostimulation potential of non-platinum complexes
5 Conclusion and outlook

中图分类号: 

()
[1] June C H. J. Clin. Invest., 2007, 117:1466.
[2] Pardoll D M. Nat. Rev. Cancer., 2012, 12:252.
[3] Liao W, Lin J X, Leonard W J. Immunity., 2013, 38:13.
[4] Ramakrishnan R, Gabrilovich D I. Cancer Immunol. Immunother., 2013, 62:405.
[5] Klemm F, Joyce J A. Trends Cell Biol., 2015, 25:198.
[6] Swartz M A, Iida N, Roberts E W, Sangaletti S, Wong M H, Yull F E, Coussens L M, DeClerck Y A. Cancer Res., 2012, 72:2473.
[7] Verhoeven D, Stoppelenburg A J, Meyer-Wentrup F, Boes M. Clin. Immunol., 2018, 190:22.
[8] Dunn G P, Bruce A T, Ikeda H, Old L J, Schreiber R D. Nat. Immunol., 2002, 3:991.
[9] Munn D H, Bronte V. Curr. Opin. Immunol., 2016, 39:1.
[10] Khong H T, Restifo N P. Nat. Immunol., 2002, 3:999.
[11] Wherry E J. Nat. Immunol., 2011, 12:492.
[12] Chen L P, Flies D B. Nat. Rev. Immunol., 2013, 13:227.
[13] Keir M E, Butte M J, Freeman G J, Sharpe A H. Annu. Rev. Immunol., 2008, 26:677.
[14] Gabrilovich D I, Nagaraj S. Nat. Rev. Immunol., 2009, 9:162.
[15] Wood K J, Sakaguchi S. Nat. Rev. Immunol., 2003, 3:199.
[16] Roncarolo M G, Battaglia M. Nat. Rev. Immunol., 2007, 7:585.
[17] Rosenberg B. Cancer Chemother Rep. 1975, 59:589.
[18] Chang C L, Hsu Y T, Wu C C, Lai Y Z, Wang C N, Yang Y C, Wu T C, Hung C F. Cancer Res., 2013, 73:119.
[19] Taniguchi K, Nishiura H, Yamamoto T. J. Immunother., 2011, 34:480.
[20] Liu Q L, Wang Y F, Wang H, Liu Y Y, Liu T, Kunda P E. Cancer Res. Clin. Oncol., 2013, 139:1357.
[21] Sukkurwala A Q, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E, Baracco E E, Galluzzi L, Zitvogel L, Kepp O. OncoImmunology., 2014, 3:e28473.
[22] Mattarollo S R, Loi S, Duret H, Ma Y T, Zitvogel L, Smyth M J. Cancer Res., 2011, 71:4809.
[23] Lake R A, Robinson B W S. Nat. Rev. Cancer., 2005, 5:397.
[24] Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. Nat. Rev. Drug Discov., 2012, 11:215.
[25] Ramakrishnan R, Huang C, Cho H I, Lloyd M, Johnson J, Ren X, Altiok S, Sullivan D, Weber J, Celis E, Gabrilovich D I. Cancer Res., 2012, 72:5483.
[26] Rnhjizvi N A, Hellmann M D, Brahmer J R, Juergens R A, Borghaei H, Gettinger S, Chow L Q, Gerber D E, Laurie S A, Goldman J W, Shepherd F A, Shen Y, Nathan F E, Harbison C T, Antonia S. J. Clin. Oncol., 2016, 34:2969.
[27] Obeid M, Tesniere A, Ghiringhelli F, Fimia G M, Apetoh L, Perfettini J L, Castedo M, Mignot G, Panaretakis T, Casares N. Nat. Med., 2007, 13:54.
[28] Rad A N, Pollara G, Sohaib S M A, Chiang C, Chain B M, Katz D R. Cancer Res., 2003, 63:5143.
[29] Tseng C W, Hung C F, Alvarez R D, Trimble C, Huh W K, Kim D, Chuang C M, Lin C T, Tsai Y C, He L M, Monie A, Wu T C. Clin. Cancer Res., 2008, 14:3185.
[30] Sharma A, Ramanjaneyulu A, Ray R, Rajeswari M R. DNA Cell Biol., 2009, 28:311
[31] Green D R, Ferguson T, Zitvogel L, Kroemer G. Nat. Rev. Immunol., 2009, 9:353.
[32] Kepp O, Tesniere A, Zitvogel L, Kroemer G. Curr. Opin. Oncol., 2009, 21:71.
[33] 张峻岭(Zhang J L), 李卫泊(Li W B), 李冬斌(Li D B), 谢绍建(Xie S J), 蔡建辉(Cai J H). 免疫学杂志(Immunological Journal), 2010, 26(08):730.
[34] Vacchelli E, Senovilla L, Eggermont A, Fridman W H, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Oncoimmunology., 2013, 2:e23510.
[35] Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira J P, Delaloge S, Kroemer G, Zitvoge L. Immunol. Rev., 2007, 220:47.
[36] Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri M C, Ullrich E, Saulnier, P. Nat. Med. 2007, 13:1050.
[37] Krysko D V, Garg A D, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Nat. Rev. Cancer., 2012, 12:860.
[38] Garg A D, Krysko D V, Verfaillie T, Kaczmarek A, Ferreira G B, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek A J M. EMBO J., 2012, 31:1062.
[39] Chao M P, Jaiswal S, Weissman-Tsukamoto R, Alizadeh A A, Gentles A J, Volkmer J, Weiskopf K, Willingham S B, Raveh T, Park C Y. Sci. Transl. Med., 2010, 2:63ra94.
[40] Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L. Oncogene., 2010, 29:482.
[41] Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G. Curr. Opin. Immunol., 2008, 20:504.
[42] Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala A Q, Michaud M, Senovilla L, Galluzzi L, Kroemer G, Zitvogel L. Cytokine Growth Factor Rev., 2013, 24:311.
[43] Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Cancer Cell., 2015, 28:690.
[44] Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Annu. Rev. Immunol., 2013, 31:51.
[45] Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R. Oncoimmunology., 2015, 4:e1008866.
[46] Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spisek R. Cancer Res., 2011, 71:4821.
[47] Wang X Y, Guo Z J. Chem. Soc. Rev., 2013, 42:202.
[48] Wang D, Lippard S J. Nat. Rev. Drug Discov., 2005, 4:307.
[49] Curtis F A, Reed P, Wilson L A, Bowers L Y, Yeo R P, Sanderson, J M, Walmsley A R, Sharples G J. J. Mol. Recognit., 2011, 24:333.
[50] Lichtenstein A K, Pende D. Cancer Res., 1986, 46:639.
[51] Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho H I, Antonia S, Altiok S, Celis E, Gabrilovich D I. J. Clin. Invest., 2010, 120:1111.
[52] Chen G, Emens L A. Cancer Immunol. Immunother., 2013, 62:203.
[53] Nowak A K, Lake R A, Marzo A L, Scott B, Heath W R, Collins E J, Frelinger J A, Robinson B W S. J. Immunol., 2003, 170:4905.
[54] Shurin G V, Tourkova I L, Kaneno R, Shurin M R. J. Immunol., 2009, 183:137.
[55] Zitvogel L, Galluzzi L, Smyth M J, Kroemer, G. Immunity, 2013, 39:74.
[56] Terenzi A, Pirker C, Keppler B K, Berger W. J. Inorg. Biochem., 2016, 165:71.
[57] Jungwirth U, Xanthos D N, Gojo J, Bytzek A K, Korner W, Heffeter P, Abramkin S A, Jakupec M A, Hartinger C G, Windberger U. Mol. Pharmacol., 2012, 81:719.
[58] Abramkin S A, Jungwirth U, Valiahdi S M, Dworak C, Habala L, Meelich K, Berger W, Jakupec M A, Hartinger C G, Nazarov A A. J. Med. Chem., 2010, 53:7356.
[59] Wong D Y Q, Ong W W F, Ang W H. Angew. Chem. Int. Ed., 2015, 54:6483.
[60] Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. Coord. Chem. Rev., 2016, 310:41.
[61] Dilruba S, Kalayda G V. Cancer Chemother. Pharmacol., 2016, 77:1103.
[62] Arsenijevic M, Milovanovic M, Jovanovic S, Arsenijevic N, Markovic B S, Gazdic M, Volarevic V. J. Biol. Inorg. Chem., 2017, 22:807.
[63] Huang J, Chen K, Chen J, Gong W, Dunlop N M, Howard O M Z, Gao Y, Bian X W, Wang J M. Br. J. Cancer., 2010, 102:1052.
[64] Zhou Y, Bian X W, Le Y Y, Gong W H, Hu J Y, Zhang X, Wang L H, Iribarren P, Salcedo R, Howard O M Z. JNCI-J. Natl. Cancer Inst., 2005, 97:823.
[65] Kim S D, Lee H Y, Shim J W, Kim H J, Baek S H, Zabel B A, Bae Y S. PLoS One, 2012, 7:e30522.
[66] Wong D Y Q, Yeo C H F, Ang W H. Angew. Chem.-Int. Edit., 2014, 53:6752.
[67] Lo Re D, Montagner D, Tolan D; Di Sanza C, Iglesias M, Calon A, Giralt E. Chem Commun., DOI:10.1039/c8cc02071j
[68] Davar D, Bahary N. Target. Oncol., 2018, 13, 125.
[69] Muller A J, DuHadaway J B, Donover P S, Sutanto-Ward E, Prendergast G C. Nat. Med., 2005, 11:312.
[70] Awuah S G, Zheng Y R, Bruno P M, Hemann M T, Lippard S J. J. Am. Chem. Soc., 2015, 137:14854.
[71] Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y. Immunity., 2016, 44:343.
[72] Wang N, Wang Z G, Xu Z F, Chen X F, Zhu G Y. Angew. Chem. Int. Edit., 2018, 57:3426.
[73] Krishnamachari Y, Geary S M, Lemke C D, Salem A K. Pharm. Res., 2011, 28:215.
[74] Huang M H, Huang C Y, Lin S C, Chen J H, Ku C C, Chou A H, Liu S J, Chen H W, Chong P, Leng C H. Microbes Infect., 2009, 11:654.
[75] Ghoneum M, Ghoneum A, Gimzewski J. Anticancer Res., 2010, 30:4075.
[76] Meng X J, Leyva M L, Jenny M, Gross I, Benosman S, Fricker B, Harlepp S, Hébraud P, Boos A, Wlosik P, Bischoff P, Sirlin C, Pfeffer M, Loeffler J P, Gaiddon C. Cancer Res., 2009, 69:5458.
[77] Cao R, Jia J L, Ma X C, Zhou M, Fei H. J. Med. Chem., 2013, 56:3636.
[78] Suntharalingam K, Johnstone T C, Bruno P M, Lin W, Hemann M T, Lippard S J. J. Am. Chem. Soc., 2013, 135:14060.
[79] Bortolozzi R, Viola G, Porcù E, Consolaro F, Marzano C, Pellei M, Gandin V, Basso G. Oncotarget., 2014, 5:5978.
[80] Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchiò L. J. Am. Chem. Soc., 2011, 133:6235.
[81] Gandin V, Tisato F, Dolmella A, Pellei M, Santini C, Giorgetti M, Marzano C, Porchia M. J. Med. Chem., 2014, 57:4745.
[82] Jaouen G, Vessières A, Top S. Chem. Soc. Rev., 2015, 44:8802.
[83] Arambula J F, McCall R, Sidoran K J, Magda D, Mitchell N A, Bielawski C W, Lynch V M, Sessler J L, Arumugam K. Chem. Sci. 2016, 7:1245.
[84] Shalapour S, Font-Burgada J, Di Caro G, Zhong Z Y, Sanchez-Lopez E, Dhar D, Willimsky G, Ammirante M, Strasner A, Hansel D E. Nature, 2015, 521:94.
[85] Lesterhuis W J, Punt C J A, Hato S V, Eleveld-Trancikova D, Jansen B J H, Nierkens S, Schreibelt G, de Boer A, Van Herpen C M L, Kaanders J H. J. Clin. Invest., 2011, 121:3100.
[1] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[2] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[3] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[4] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[7] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[8] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[9] 展鹏, 王学顺, 刘新泳. “精准医疗”背景下的分子靶向药物研究——精准药物设计策略浅析[J]. 化学进展, 2016, 28(9): 1363-1386.
[10] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[11] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[12] 王家敏, 史蕾, 刘海洋. 咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J]. 化学进展, 2015, 27(6): 755-762.
[13] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[14] 赵艳, 郭彩红, 武海顺. 几类过渡金属配合物催化的烯烃硅氢化反应机理[J]. 化学进展, 2014, 26(0203): 345-357.
[15] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.