English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 894-905 DOI: 10.7536/PC181008 前一篇   后一篇

所属专题: 电化学有机合成

• •

血液肿瘤相关生物标志物的电化学传感检测

宫苗1, 王晓英1,**(), 王晓宁2   

  1. 1.东南大学公共卫生学院 环境医学工程教育部重点实验室 南京 210009
    2.西安交通大学医学院第一附属医院血液内科 西安 710061
  • 收稿日期:2018-10-08 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 王晓英
  • 基金资助:
    国家自然科学基金项目(81302472); 国家自然科学基金项目(81600179); 江苏高校“青蓝工程”及江苏省研究生实践创新计划项目(SJCX18-0079)

Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies

Miao Gong1, Xiaoying Wang1,**(), Xiaoning Wang2   

  1. 1.Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
    2.Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
  • Received:2018-10-08 Online:2019-06-15 Published:2019-04-26
  • Contact: Xiaoying Wang
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(81302472); National Natural Science Foundation of China(81600179); the “Blue Project” Funded by Universities in Jiangsu, and the Postgraduate Practice Innovation Program of Jiangsu Province(SJCX18-0079)

血液肿瘤是一类严重危害人类健康的血液系统恶性疾病,主要累及骨髓、血液及淋巴组织。血液肿瘤相关生物标志物的定量检测是实现疾病精细化病理分型以实施靶向治疗进而改善预后的关键。本文对血液肿瘤相关生物标志物的种类、目前国内外常用的检测方法进行概述,重点阐述电化学生物传感器在检测血液肿瘤相关生物标志物方面的最新进展,并对血液肿瘤相关生物标志物电化学传感技术的未来发展方向提出展望,拟为其深入研究与应用提供参考。

Hematological malignancies(HM) is a kind of malignant disease of hematology system which seriously threatens human health, mainly involving bone marrow, blood and lymphatic tissue. The quantification of biomarkers in hematological malignancies is the key for fine stratification analysis, personalized targeted therapy and prognostic improvement. In this paper, the specific types and the commonly used detection methods at home and abroad of the hematological malignancies related biomarkers are summarized and compared. Specifically, the latest application of new electrochemical biosensor for the hematological malignancies related biomarkers is mainly described. Furthermore, the summary of its future directions and the potential applications is given, which provides reference for the further research and application of the biomarkers in hematological malignancies.

()
表1 血液肿瘤中常见生物标志物[1,12~14]
Table 1 Common biomarkers in hematological malignancies
表2 血液肿瘤相关生物标志物常规检测方法
Table 2 Commonly used detection methods of the biomarkers in hematological malignancies
图1 标记型电化学和ECL检测BCR/ABL[28](A)和P16基因[33](B)
Fig. 1 Labeled electrochemical and ECL sensor for BCR/ABL fusion gene[28](A) and P16 gene[33](B)
表3 电化学方法检测血液肿瘤中DNA类生物标志物
Table 3 Electrochemical sensor for DNA biomarkers in hematological malignancies
图2 标记型电化学方法检测miRNA-155[41](A)和C-myc蛋白[46](B)
Fig. 2 Labeled electrochemical sensor for miRNA-155[41] (A) and C-myc protein[46] (B)
表4 电化学方法检测血液肿瘤中RNA类生物标志物
Table 4 Electrochemical sensor for RNA biomarkers in hematological malignancies
图3 基于抗原和[48](A)和适配体识别的标记型电化学细胞传感器[50](B)
Fig. 3 Labeled electrochemical sensor based on antigen[48](A) and aptamer[50](B)
表5 标记型电化学方法检测血液肿瘤细胞
Table 5 Labeled electrochemical sensor for hematological malignancies cells
图4 无标记型电化学和ECL方法检测K562/ADM细胞 [61](A)和BCR/ABL基因[69](B)
Fig. 4 Label-free electrochemical and ECL sensor for K562/ADM cell[61] (A) and BCR/ABL gene[69] (B)
表6 无标记型电化学方法检测血液肿瘤中生物标志物
Table 6 Label-free electrochemical sensor for biomarkers in hematological malignancies
图5 基于ECL和ASV分步检测靶DNA和癌细胞[67](A)和电化学同时检测Bcl-2和Bax蛋白[79](B)
Fig. 5 The detection of tDNA and cancer cells based on ECL and ASV[67](A)and simultaneous electrochemical detection of Bcl-2 and Bax proteins[79](B)
图6 基于纸基电极对肿瘤细胞的同时电化学传感检测[82]
Fig. 6 Paper-based electrodes for simultaneous electrochemical detection of multiple cancer cells[82]
[1]
Lawrie C H . Blood. Rev., 2013,27(3):143. https://www.ncbi.nlm.nih.gov/pubmed/23623930

doi: 10.1016/j.blre.2013.04.002     URL     pmid: 23623930
[2]
Dhodapkar M V, Dhodapkar K M . Semin. Oncol., 2015,42(4):617.
[3]
Topkaya S N, Azimzadeh M, Ozsoz M . Electroanal., 2016,28(7):1402.
[4]
Deininger M W N, Goldman J M, Melo J V . Blood, 2000,96(10):3343. https://www.ncbi.nlm.nih.gov/pubmed/11071626

URL     pmid: 11071626
[5]
Ofran Y, Izraeli S . Blood Rev., 2017,31(2):11. https://www.ncbi.nlm.nih.gov/pubmed/27665024

doi: 10.1016/j.blre.2016.09.001     URL     pmid: 27665024
[6]
Rosenthal A, Younes A . Blood Rev., 2017,31(2):37. https://www.ncbi.nlm.nih.gov/pubmed/27717585

doi: 10.1016/j.blre.2016.09.004     URL     pmid: 27717585
[7]
Petrich A M, Nabhan C, Smith S M . Cancer, 2014,120(24):3884.
[8]
Stine Z E, Walton Z E, Altman B J, Hsieh A L, Dang C V . Cancer Discov., 2015,5(10):1024.
[9]
Tavallaie R, De Almeida S R, Gooding J J . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015,7(4):580. https://www.ncbi.nlm.nih.gov/pubmed/25529633

doi: 10.1002/wnan.1324     URL     pmid: 25529633
[10]
Hanahan D, Weinberg R A . Cell, 2011,144(5):646. https://www.ncbi.nlm.nih.gov/pubmed/21376230

doi: 10.1016/j.cell.2011.02.013     URL     pmid: 21376230
[11]
Ouyang W, Yu Z, Zhao X, Lu S, Wang Z . Crit. Rev. Oncol. Hematol., 2016,106:108. https://www.ncbi.nlm.nih.gov/pubmed/27637356

doi: 10.1016/j.critrevonc.2016.08.003     URL     pmid: 27637356
[12]
Marques S C, Laursen M B, Bodker J S, Kjeldsen M K, Falgreen S, Schmitz A, Bogsted M, Johnsen H E, Dybkaer K . Oncotarget, 2015,6(1):7. https://www.ncbi.nlm.nih.gov/pubmed/25622103

doi: 10.18632/oncotarget.3057     URL     pmid: 25622103
[13]
Taylor J, Xiao W, Abdel-Wahab O . Blood, 2017,130(4):410.
[14]
Xie L, Jing R, Qi J, Lin Z, Ju S . Blood Rev., 2015,29(1):33. https://www.ncbi.nlm.nih.gov/pubmed/25263425

doi: 10.1016/j.blre.2014.09.005     URL     pmid: 25263425
[15]
Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, Zetterberg A, Cheng T, Miao W . Biomarker Research, 2014,2(1):3. https://www.ncbi.nlm.nih.gov/pubmed/24499728

doi: 10.1186/2050-7771-2-3     URL     pmid: 24499728
[16]
Santos Gda C, Saieg M A, Ko HM, Geddie W R, Boerner S L, Craddock K J, Crump M, Bailey D . Cancer Cytopathol., 2015,123(7):413. https://www.ncbi.nlm.nih.gov/pubmed/25807917

doi: 10.1002/cncy.21535     URL     pmid: 25807917
[17]
Adamopoulos P G, Kontos C K, Tsiakanikas P, Scorilas A . Cancer Lett., 2016,373(1):119. https://www.ncbi.nlm.nih.gov/pubmed/26797417

doi: 10.1016/j.canlet.2016.01.019     URL     pmid: 26797417
[18]
Tong Y Q, Zhao Z J, Liu B, Bao A Y, Zheng H Y, Gu J, Xia Y, McGrath M, Dovat S, Song C H, Li Y . Leuk. Res., 2018,69:47. https://www.ncbi.nlm.nih.gov/pubmed/29655153

doi: 10.1016/j.leukres.2018.04.001     URL     pmid: 29655153
[19]
Sharma M C, Gupta R K, Kaushal S, Suri V, Sarkar C, Singh M, Kale S S, Sahoo R K, Kumar L, Raina V . Indian J. Med. Res., 2016,143(5):605. https://www.ncbi.nlm.nih.gov/pubmed/27488004

doi: 10.4103/0971-5916.187109     URL     pmid: 27488004
[20]
Kumar M A, Barathidasan R, Palanivelu M, Singh S D, Wani M Y, Malik Y S, Singh R, Dhama K . J. Virol. Methods, 2016,236:271.
[21]
Cordoba R, Alvarez B, Masso P, Gonzalez FA, Conejo L, Velasco D, Alonso J M, Villarrubia J, Cava F, Llamas P . Cytometry B Clin. Cytom., 2016,90(6):543. https://www.ncbi.nlm.nih.gov/pubmed/25612555

doi: 10.1002/cyto.b.21227     URL     pmid: 25612555
[22]
Li L, Chen Y, Zhu J J . Anal. Chem., 2017,89(1):358. https://www.ncbi.nlm.nih.gov/pubmed/27959507

doi: 10.1021/acs.analchem.6b04675     URL     pmid: 27959507
[23]
Jayanthi V, Das AB, Saxena U . Biosens. Bioelectron., 2017,91:15. https://www.ncbi.nlm.nih.gov/pubmed/27984706

doi: 10.1016/j.bios.2016.12.014     URL     pmid: 27984706
[24]
Liu Z, Qi W, Xu G . Chem. Soc. Rev., 2015,44(10):3117. https://www.ncbi.nlm.nih.gov/pubmed/25803228

doi: 10.1039/c5cs00086f     URL     pmid: 25803228
[25]
Pakchin P S, Nakhjavani SA, Saber R, Ghanbari H, Omidi Y . TrAC Trend. Anal. Chem., 2017,92:32.
[26]
Akter R, Rahman M A, Rhee C K . Anal. Chem., 2012,84(15):6407. https://www.ncbi.nlm.nih.gov/pubmed/22793977

doi: 10.1021/ac300110n     URL     pmid: 22793977
[27]
Wang C, Zhou H, Zhu W, Li H, Jiang J, Shen G, Yu R . Biosens. Bioelectron., 2013,47:324. https://www.ncbi.nlm.nih.gov/pubmed/23603128

doi: 10.1016/j.bios.2013.03.020     URL     pmid: 23603128
[28]
Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W . Biosens. Bioelectron., 2014,51:201. https://www.ncbi.nlm.nih.gov/pubmed/23962707

doi: 10.1016/j.bios.2013.07.049     URL     pmid: 23962707
[29]
Chen X, Wang L, Sheng S, Wang T, Yang J, Xie G, Feng W . Anal. Chim. Acta., 2015,889:90. https://www.ncbi.nlm.nih.gov/pubmed/26343430

doi: 10.1016/j.aca.2015.06.050     URL     pmid: 26343430
[30]
Hu L, Tan T, Chen G, Zhang K, Zhu J J . Electrochem. Commun., 2013,35:104.
[31]
Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X . J. Lumin., 2018,201:135.
[32]
Wang X, Wang Y, Shan Y, Jiang M, Jin X, Gong M, Xu J . J. Electroanal. Chem., 2018,823:368.
[33]
Wang X, Wang Y, Shan Y, Jiang M, Gong M, Jin X, Wang X, Cheng J . Talanta, 2018,187:179. https://www.ncbi.nlm.nih.gov/pubmed/29853032

doi: 10.1016/j.talanta.2018.05.033     URL     pmid: 29853032
[34]
Zhong G X, Ye J X, Bai F Q, Fu F H, Chen W, Liu A L, Lin X H, Chen Y Z . Sensor. Actuat. B -Chem., 2014,204:326.
[35]
Mazloum-Ardakani M, Barazesh B, Khoshroo A, Moshtaghiun M, Sheikhha MH . Bioelectrochemistry, 2018,121:38. https://www.ncbi.nlm.nih.gov/pubmed/29367018

doi: 10.1016/j.bioelechem.2017.12.010     URL     pmid: 29367018
[36]
Lei Y, Feng M J, Wang K, Lin L Q, Chen Y Z, Lin X H . Anal. Bioanal. Chem., 2013,405(1):423. https://www.ncbi.nlm.nih.gov/pubmed/23064710

doi: 10.1007/s00216-012-6477-6     URL     pmid: 23064710
[37]
Lee A C, Du D, Chen B, Heng C K, Lim T M, Lin Y . Analyst., 2014,139(17):4223. https://www.ncbi.nlm.nih.gov/pubmed/24961450

doi: 10.1039/c3an01156a     URL     pmid: 24961450
[38]
Sharma A, Sumana G, Sapra S, Malhotra BD . Langmuir, 2013,29(27):8753. https://www.ncbi.nlm.nih.gov/pubmed/23721517

doi: 10.1021/la401431q     URL     pmid: 23721517
[39]
Sun Y, Ren Q, Liu B, Qin Y, Zhao S . Biosens. Bioelectron., 2016,78:7. https://www.ncbi.nlm.nih.gov/pubmed/26584077

doi: 10.1016/j.bios.2015.11.014     URL     pmid: 26584077
[40]
Cheng F F, He T T, Miao H T, Shi J J, Jiang L P, Zhu J J . ACS Appl. Mater Interfaces, 2015,7(4):2979.
[41]
Wu X, Chai Y, Zhang P, Yuan R . ACS Appl. Mater. Interfaces., 2015,7(1):713. https://www.ncbi.nlm.nih.gov/pubmed/25495913

doi: 10.1021/am507059n     URL     pmid: 25495913
[42]
Wang D, Hu L, Zhou H, Abdel-Halim E S, Zhu J J . Electrochem. Commun., 2013,33:80.
[43]
Labib M, Ghobadloo S M, Khan N, Kolpashchikov D M, Berezovski M V . Anal. Chem., 2013,85(20):9422. https://www.ncbi.nlm.nih.gov/pubmed/24047131

doi: 10.1021/ac402416z     URL     pmid: 24047131
[44]
Jou A F J, Chen Y J, Li Y, Chang Y F, Lee J J, Liao A T, Ho J A . Electrochimica. Acta, 2017,236:190.
[45]
Farzin L, Shamsipur M . J. Pharm. Biomed. Anal., 2018,147:185. https://www.ncbi.nlm.nih.gov/pubmed/28869052

doi: 10.1016/j.jpba.2017.07.042     URL     pmid: 28869052
[46]
He J L, Tian Y F, Cao Z, Zou W, Sun X . Sensor. Actuat. B -Chem., 2013,181:835.
[47]
Wang X, Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X . Anal. Biochem., 2018,548:15. https://www.ncbi.nlm.nih.gov/pubmed/29432752

doi: 10.1016/j.ab.2018.02.006     URL     pmid: 29432752
[48]
Xu L, Zhu L, Jia N, Huang B, Tan L, Yang S, Tang H, Xie Q, Yao S . Actuat. B-Chem., 2013,186:506.
[49]
Zhao N, Pei S N, Qi J, Zeng Z, Iyer S P, Lin P, Tung C H, Zu Y . Biomaterials, 2015,67:42. https://www.ncbi.nlm.nih.gov/pubmed/26204224

doi: 10.1016/j.biomaterials.2015.07.025     URL     pmid: 26204224
[50]
Yu T, Zhang H, Huang Z, Luo Z, Huang N, Ding S, Feng W . Electroanal., 2017,29(3):828.
[51]
Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J . Biosens. Bioelectron., 2013,49:79. https://www.ncbi.nlm.nih.gov/pubmed/23722045

doi: 10.1016/j.bios.2013.05.003     URL     pmid: 23722045
[52]
Zheng T, Fu J, Jiang L, Zhu J J . J. Electroanal. Chem., 2016,781:418.
[53]
Khoshfetrat S M, Mehrgardi M A . Bioelectrochemistry, 2017,114:24. https://www.ncbi.nlm.nih.gov/pubmed/27992855

doi: 10.1016/j.bioelechem.2016.12.001     URL     pmid: 27992855
[54]
Zhang K, Tan T, Fu J J, Zheng T, Zhu J J . Analyst., 2013,138(21):6323. https://www.ncbi.nlm.nih.gov/pubmed/23978949

doi: 10.1039/c3an01255g     URL     pmid: 23978949
[55]
Liu J, Cui M, Niu L, Zhou H, Zhang S . Chemistry, 2016,22(50):18001. https://www.ncbi.nlm.nih.gov/pubmed/27781354

doi: 10.1002/chem.201604354     URL     pmid: 27781354
[56]
Su M, Ge L, Ge S, Li N, Yu J, Yan M, Huang J . Anal. Chim. Acta, 2014,847:1.
[57]
Yi Z, Li X Y, Gao Q, Tang L J, Chu X . Analyst., 2013,138(7):2032. https://www.ncbi.nlm.nih.gov/pubmed/23420020

doi: 10.1039/c3an36474g     URL     pmid: 23420020
[58]
Yang H, Yang Q, Li Z, Du Y, Zhang C . Sensor. Actuat. B -Chem., 2016,236:712.
[59]
Chen M, Bi S, Jia X, He P . Anal. Chim. Acta, 2014,837:44
[60]
Huang T, Jie G . Anal. Biochem., 2013,442(1):34. https://www.ncbi.nlm.nih.gov/pubmed/23872009

doi: 10.1016/j.ab.2013.07.011     URL     pmid: 23872009
[61]
Zhang S, Zhang L, Zhang X, Yang P, Cai J . Analyst., 2014,139(14):3629. https://www.ncbi.nlm.nih.gov/pubmed/24889704

doi: 10.1039/c4an00420e     URL     pmid: 24889704
[62]
Zhang W .J. Solid State Electr., 2015,20(2):499.
[63]
Yang T, Meng L, Wang X, Wang L, Jiao K . ACS Appl. Mater. Interfaces., 2013,5(21):10889. https://www.ncbi.nlm.nih.gov/pubmed/24088603

doi: 10.1021/am403090y     URL     pmid: 24088603
[64]
Avelino K, Frias IAM, Lucena-Silva N, Gomes R G, de Melo C P, Oliveira M D L, Andrade C A S . Colloid. Surface. B, 2016,148:576.
[65]
Chen L, Luo Y, Liu T, Yuan Y, Gu H, Yang Y, Li L, Tan L . Talanta, 2015,132:479.
[66]
Hu R, Wang G, Yuan R, Xu Y, Yu T, Zhong L, Zhou Q, Ding S . J. Electroanal. Chem., 2017,789:160.
[67]
Jie G, Zhang J, Jie G, Wang L . Biosens. Bioelectron., 2014,52:69. https://www.ncbi.nlm.nih.gov/pubmed/24021658

doi: 10.1016/j.bios.2013.08.006     URL     pmid: 24021658
[68]
Hong L R, Chai Y Q, Zhao M, Liao N, Yuan R, Zhuo Y . Biosens. Bioelectron., 2015,63:392. https://www.ncbi.nlm.nih.gov/pubmed/25128620

doi: 10.1016/j.bios.2014.07.065     URL     pmid: 25128620
[69]
Xu Y, Xu Y, Zuo Z, Zhou X, Guo B, Sang Y, Ding S . J. Electroanal Chem., 2017,801:192.
[70]
Zhang W . J. Appl. Electrochem., 2016,46(5):559.
[71]
Yang J, Zhang W . J. Solid State Electr., 2014,18(10):2863.
[72]
Ensafi A A, Amini M, Rezaei B, Talebi M . Biosens. Bioelectron., 2016,77:409. https://www.ncbi.nlm.nih.gov/pubmed/26436328

doi: 10.1016/j.bios.2015.09.063     URL     pmid: 26436328
[73]
Pandey C M, Dewan S, Chawla S, Yadav B K, Sumana G, Malhotra B D . Anal. Chim. Acta., 2016,937:29. https://www.ncbi.nlm.nih.gov/pubmed/27590542

doi: 10.1016/j.aca.2016.07.024     URL     pmid: 27590542
[74]
Kerr-Phillips T E, Aydemir N, Chan E W C, Barker D, Malmstrom J, Plesse C, Travas-Sejdic J . Biosens. Bioelectron., 2018,100:549. https://www.ncbi.nlm.nih.gov/pubmed/29017070

doi: 10.1016/j.bios.2017.09.042     URL     pmid: 29017070
[75]
Zhang D, Zhang Y, Zheng L, Zhan Y, He L . Biosens. Bioelectron., 2013,42:112. https://www.ncbi.nlm.nih.gov/pubmed/23202339

doi: 10.1016/j.bios.2012.10.057     URL     pmid: 23202339
[76]
Ma Z, Liu N . Expert Rev. Mol. Diagn., 2015,15(8):1075. https://www.ncbi.nlm.nih.gov/pubmed/26027743

doi: 10.1586/14737159.2015.1052798     URL     pmid: 26027743
[77]
Zheng T, Fu J J, Hu L, Qiu F, Hu M, Zhu J J, Hua Z C, Wang H . Anal. Chem., 2013,85(11):5609. https://www.ncbi.nlm.nih.gov/pubmed/23621478

doi: 10.1021/ac400994p     URL     pmid: 23621478
[78]
Zheng T, Tan T, Zhang Q, Fu J J, Wu J J, Zhang K, Zhu J J, Wang H . Nanoscale, 2013,5(21):10360.
[79]
Zhou S, Wang Y, Zhu J J . ACS Appl. Mater. Interfaces., 2016,8(12):7674. https://www.ncbi.nlm.nih.gov/pubmed/26946947

doi: 10.1021/acsami.6b01010     URL     pmid: 26946947
[80]
Akhavan O, Ghaderi E, Rahighi R, Abdolahad M . Carbon, 2014,79:654.
[81]
Cui Z, Wu D, Zhang Y, Ma H, Li H, Du B, Wei Q, Ju H . Anal. Chim. Acta., 2014,807:44. https://www.ncbi.nlm.nih.gov/pubmed/24356219

doi: 10.1016/j.aca.2013.11.025     URL     pmid: 24356219
[82]
Wang N, Feng Y, Wang Y, Ju H, Yan F . Anal. Chem., 2018,90(12):7708. https://www.ncbi.nlm.nih.gov/pubmed/29847924

doi: 10.1021/acs.analchem.8b01610     URL     pmid: 29847924
[83]
Du D, Wang J, Lu D, Dohnalkova A, Lin Y . Anal. Chem., 2011,83(17):6580. https://www.ncbi.nlm.nih.gov/pubmed/21797208

doi: 10.1021/ac2009977     URL     pmid: 21797208
[84]
Wu L, Ma C, Ge L, Kong Q, Yan M, Ge S, Yu J . Biosens. Bioelectron., 2015,63:450. https://www.ncbi.nlm.nih.gov/pubmed/25128625

doi: 10.1016/j.bios.2014.07.077     URL     pmid: 25128625
[1] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[2] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[3] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.
[4] 马小媛, 钱卫平. 抗氧化能力评价方法[J]. 化学进展, 2011, 23(8): 1737-1746.
[5] 高成耀, 常明, 李晓伟, 李翠平. 硼掺杂金刚石电极及其电分析应用[J]. 化学进展, 2011, 23(5): 951-962.
[6] 张晨 赵美萍. 人体呼出气中挥发性有机化合物的检测方法*[J]. 化学进展, 2010, 22(01): 140-147.
[7] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.
[8] 雷丽红,傅迎春,徐霞红,谢青季,姚守拙. 基于核酸适体的电化学生物传感器*[J]. 化学进展, 2009, 21(04): 724-731.
[9] 陈保卫,那仁满都拉,吕美玲,X.,Chris,Le. 砷的代谢机制、毒性和生物监测[J]. 化学进展, 2009, 21(0203): 474-482.
[10] 郭丽,巴特,郑明辉. 多氯萘的研究*[J]. 化学进展, 2009, 21(0203): 377-389.
[11] 牛红云, 蔡亚岐, 魏复盛, 牟世芬, 江桂斌. 多环芳烃暴露的生物标志物——尿中羟基多环芳烃[J]. 化学进展, 2006, 18(10): 1381-1390.
[12] 袁瑞娟,王怀锋,刘丹宁,郭玉高,付华锋. 毛细管电色谱技术研究进展*[J]. 化学进展, 2006, 18(09): 1181-1187.
[13] 闫瑾,赵美萍,李元宗,常文保. 罂粟碱检测方法研究进展*[J]. 化学进展, 2005, 17(05): 897-904.
[14] 漆红兰,张成孝. 纳米粒子在电化学DNA生物传感器研究中的应用*[J]. 化学进展, 2005, 17(05): 911-915.
[15] 周庆祥,江桂斌. 卵黄蛋白原的分离测定及其在环境内分泌干扰物质筛选中的应用*[J]. 化学进展, 2003, 15(01): 67-.