English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 206-224 DOI: 10.7536/PC170708 前一篇   后一篇

• 综述 •

信号放大技术在食品安全检测领域的应用

周洋洋1, 钟建1, 卞晓军1, 刘刚2*, 李亮3, 颜娟1*   

  1. 1. 上海海洋大学食品学院 农业部水产品贮藏保鲜质量安全风险评估实验室(上海) 上海 201306;
    2. 上海市计量测试技术研究院 生物计量实验室 上海 201203;
    3. 中国农业科学院生物技术研究所 农业部转基因植物用微生物环境安全监督检验测试中心(北京) 北京 100081
  • 收稿日期:2017-08-18 修回日期:2017-10-28 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 刘刚,liug@simt.com.cn;颜娟,j-yan@shou.edu.cn E-mail:liug@simt.com.cn;j-yan@shou.edu.cn
  • 基金资助:
    海洋工程国家重点实验室(上海交通大学)开放课题项目(No.1609)和国家自然科学基金项目(No.21775102,21405167)资助

Application of Signal Amplification Technology in the Area of Food Safety Detection

Yangyang Zhou1, Jian Zhong1, Xiaojun Bian1, Gang Liu2*, Liang Li3, Juan Yan1*   

  1. 1. Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation of the Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
    2. Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203;
    3. Microbiological Environmental Safety Supervision and Testing Center for Transgenic Plants of the Ministry of Agriculture, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-08-18 Revised:2017-10-28 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(No.1609) and the National Natural Science Foundation of China(No.21775102, 21405167).
食品安全是保障人类健康、提高人类生活品质的基础,同时因我国当前所处经济社会发展的阶段性,食品安全问题在中国日益凸显。目前,食品安全检测领域主要面临检测方法不多、快检技术不成熟,尤其是缺乏超痕量的检测分析技术导致的检测灵敏度不高等问题。信号放大技术为这些问题提供了可能的解决途径,将信号放大技术与传统检测方法相结合,实现食品中重金属、生物/化学毒素、微生物及违法添加剂等方面的痕量检测正逐渐引起人们的重视。本文从四种主要的信号放大技术与该技术在食品安全检测中的研究现状、发展趋势两方面进行了概述,并展望了信号放大技术在食品安全检测领域的研究重点和未来的发展前景。
Food safety is the foundation of safeguarding human health and improving the quality of human life. At the same time, because of the phased development of our economy and society, food safety issues are increasingly exposed in China. At present, there are many problems in the area of food safety detection, including few detection methods, immature rapid detection methods, especially the absence of ultratrace analytical techniques leading to low detection sensitivity. Signal amplification technology provides a possible way to solve those problems. The combination of signal amplification technology and traditional detection methods is gradually attracting more attention because of its applications in the trace detection of heavy metal, biotoxin/chemical toxins, microorganism and illegal additives in foodstuffs. This review introduces four kinds of signal amplification technology and the applications and development tendency in the area of food safety detection. The emphasis and prospect of the development of signal amplification technology in this area are put forward.
Contents
1 Introduction
2 Signal amplification technology
2.1 Signal amplification technology of biotin-avidin system
2.2 Signal amplification technology of enzymatic catalysis
2.3 Signal amplification technology based on nanomaterials
2.4 Nucleic acid amplification
3 The application of signal amplification technology in the area of food safety detection
3.1 Heavy metals detection
3.2 Biotoxins/chemical toxins detection
3.3 Microorganism detection
3.4 Illegal additives detection
3.5 Detection of genetically modified food
4 Conclusion and outlook

中图分类号: 

()
[1] Seiber J N. Journal of Integrative Agriculture, 2012, 11:9.
[2] Tian Z, Yu D H, Zhang Y Y, Guo J H, Peng C F, Chen Z X, Xu C L. Journal of Animal and Feed Sciences, 2008, 17:253.
[3] Wang L Y, Peng C F, Chen W, Xu C L. Food and Agricultural Immunology, 2008, 19:61.
[4] Xu C L, Pen C F, Hao K, Jin Z Y, Chu X G. International Journal of Environmental Analytical Chemistry, 2006, 86:819.
[5] Peng C F, Xu C L, Jin Z Y, Chu X G, Wang L Y. Journal of Food Science, 2006, 71:C44.
[6] Xu C L, Yu D H, Chu X G, Peng C F, Jin Z Y. Analytical Letters, 2006, 39:709.
[7] Shi M, Yang Z J, Wang R S, Zhang H, Zhu Y F, Xu Y P, Lin Q Y, Jin L J. Clinica Chimica Acta, 2006, 373:172.
[8] Xu C L, Peng C F, Liu L Q, Wang L Y, Jin Z Y, Chu X G. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41:1029.
[9] Fozooni T, Ravan H, Sasan H. Applied Biochemistry and Biotechnology, 2017, 3:1
[10] Zhao Z H, Chen S X, Wang J B, Su J, Xu J Q, Mathur S, Fan C H, Song S P. Biosens. Bioelectron., 2017, 94:605.
[11] Gerasimova Y V, Kolpashchikov D M. Chem. Soc. Rev., 2014, 43:6405.
[12] Amine A, Arduini F, Moscone D, Palleschi G. Biosens. Bioelectron., 2016, 76:180.
[13] Bostan H B, Danesh N M, Karimi G, Ramezani M, Shaegh S A M, Youssefi K, Charbgoo F, Abnous K, Taghdisi S M. Biosens. Bioelectron., 2017, 98:168
[14] Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Biosens. Bioelectron., 2016, 84:97.
[15] Biswas P, Karn A K, Balasubramanian P, Kale P G. Biosens. Bioelectron., 2017, 94:589.
[16] Kurbanoglu S, Ozkan S A, Merkoci A. Biosens. Bioelectron., 2017, 89:886.
[17] Lan L Y, Yao Y, Ping J F, Ying Y B. Biosens. Bioelectron., 2017, 91:504.
[18] Robati R Y, Arab A, Ramezani M, Langroodi F A, Abnous K. Taghdisi S M, Biosens. Bioelectron., 2016, 82:162.
[19] Takalkar S, Baryeh K, Liu G D. Biosens. Bioelectron., 2017, 98:147.
[20] Zhao W W, Xu J J, Chen H Y. Biosens. Bioelectron., 2017, 92:294.
[21] Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosens. Bioelectron., 2011, 28:1.
[22] Gao S X, Zheng X, Hu B, Sun M J, Wu J H, Jiao B H, Wang L H. Biosens. Bioelectron., 2017, 89:952.
[23] Gaudin V. Biosens. Bioelectron., 2017, 90:363.
[24] Raeisossadati M J, Danesh N M, Borna F, Gholamzad M, Ramezani M, Abnous K, Taghdisi S M. Biosens. Bioelectron., 2016, 86:235.
[25] Suaifan G A, Alhogail S, Zourob M. Biosens. Bioelectron., 2017, 90:230.
[26] Wang B J, Barahona M, Buck M. Biosens. Bioelectron., 2013, 40:368.
[27] Chae M S, Kim J, Jeong D, Kim Y, Roh J H, Lee S M, Heo Y, Kang J Y, Lee J H, Yoon D S, Kim T G, Chang S T, Hwang K S. Biosens. Bioelectron., 2017, 92:610.
[28] Jayanthi V, Das A B, Saxena U. Biosens. Bioelectron, 2017, 91:15.
[29] Tarasov A, Gray D W, Tsai M Y, Shields N, Montrose A, Creedon N, Lovera P, O'riordan A, Mooney M H, Vogel E M. Biosens. Bioelectron, 2016, 79:669.
[30] Chhasatia R, Sweetman M J, Harding F J, Waibel M, Kay T, Thomas H, Loudovaris T, Voelcker N H. Biosens. Bioelectron, 2017, 91:515.
[31] Cuatrecasas P, Wilchek M. Biochemical and Biophysical Research Communications, 1968, 33:235.
[32] Wilchek M, Bayer E A. Methods in Enzymology, 1990, 184:5.
[33] Wilchek M, Bayer E A. Methods in Enzymology, 1990, 184:467.
[34] Wilchek M, Bayer E A. Immunology Today, 1984, 5:39.
[35] Bayer E A, Wilchek M. Methods of Biochemical Analysis, 1980, 26:1.
[36] 张晓春(Zhang X C), 陆燕蓉(Lu Y R). 现代预防医学(Modern Preventive Medicine), 2001, 28:485.
[37] Bayer E A, Wilchek M. Journal of Chromatography, 1990, 510:3.
[38] Jiang W X, Beier R C, Luo P J, Zhai P, Wu N, Lin G M, Wang X M, Xu G X. Journal of Agricultural and Food Chemistry, 2016, 64:364.
[39] Chang J F, Li H Y, Hou T, Li F. Biosens. Bioelectron., 2016, 86:971.
[40] Mogha N K, Sahu V, Sharma M, Sharma R K, Masram D T. Mater. Des., 2016, 111:312.
[41] Gong C Y, Gong Y, Oo M K K, Wu Y, Rao Y J, Tan X T, Fan X D. Biosens. Bioelectron., 2017, 96:351.
[42] Dai H X, Lu W J, Zuo X W, Zhu Q, Pan C J, Niu X Y, Liu J J, Chen H L, Chen X G. Biosens. Bioelectron., 2017, 95:131.
[43] Yu X, Liang J Y, Yang T G, Gong M J, Xi D M, Liu H Y. Biosens. Bioelectron., 2018, 99:163.
[44] Huang J, Li M S, Zhang P P, Zhang P F, Ding L Y, Sens. Actuator B-Chem., 2016, 237:24.
[45] Zhu G B, Lee H J. Biosens. Bioelectron., 2017, 89:959.
[46] Miao P, Ning L M, Li X X, Shu Y Q, Li G X. Biosens. Bioelectron., 2011, 27:178.
[47] Kao K C, Lin T S, Mou C Y. Journal of Physical Chemistry C, 2014, 118:6734.
[48] Zeng Y, Wan Y, Zhang D. Microchimica Acta, 2015, 183:741.
[49] Qing T P, He D G, He X X, Wang K M, Xu F Z, Wen L, Shangguan J F, Mao Z G, Lei Y L. Analytical and Bioanalytical Chemistry, 2016, 408:2793.
[50] Zheng W L, Teng J, Cheng L, Ye Y W, Pan D D, Wu J J, Xue F, Liu G D, Chen W. Biosens. Bioelectron., 2016, 80:574.
[51] Song Z J, Yuan R, Chai Y Q, Wang J F, Che X. Sensors and Actuators B:Chemical, 2010, 145:817.
[52] Wang L, Guo S J, Hu X G, Dong S J. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 317:394.
[53] Jiang S, Win K Y, Liu S H, Teng C P, Zheng Y G, Han M Y. Nanoscale, 2013, 5:3127.
[54] Sobczak-Kupiec A, Venkatesan J, Alanezi A A, Walczyk D, Farooqi A, Malina D, Hosseini S H, Tyliszczak B. Nanomedicine Nanotechnology Biology and Medicine, 2016, 12:2459.
[55] Peng F F, Zhang Y, Gu N. Chinese Chemical Letters, 2008, 19:730.
[56] Wu Q, Rong J, Shan Z, Chen H, Yang W S. Chinese Journal of Bbiotechnology, 2009, 25:1976.
[57] Sun X, Guo S, Chung C S, Zhu W, Sun S. Advanced Materials, 2013, 25:132.
[58] Lu N, Zhang M, Ding L, Zheng J, Zeng C X, Wen Y L, Liu G, Aldalbahi A, Shi J Y, Song S P, Zuo X L, Wang L H. Nanoscale, 2017, 9:4508.
[59] Song Y J, Qu K G, Zhao C, Ren J S, Qu X G. Advanced Materials, 2010, 22:2206.
[60] Sharafeldin M, Bishop G W, Bhakta S, El-Sawy A, Suib S L, Rusling J F. Biosens. Bioelectron., 2017, 91:359.
[61] Comotti M, Della Pina C, Matarrese R, Rossi M. Angewandte Chemie-International Edition, 2004, 43:5812.
[62] Luo W J, Zhu C F, Su S, Li D, He Y, Huang Q, Fan C H. ACS Nano, 2010, 4:7451.
[63] Li J F, Tian X D, Li S B, Anema J R, Yang Z L, Ding Y, Wu Y F, Zeng Y M, Chen Q Z, Ren B, Wang Z L, Tian Z Q. Nature Protocols, 2013, 8:52.
[64] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Nature, 2010, 464:392.
[65] Lin X D, Li J F, Huang Y F, Tian X D, Uzayisenga V, Li S B, Ren B, Tian Z Q. Journal of Electroanalytical Chemistry, 2013, 688:5.
[66] Tang H B, Meng G W, Huang Q, Zhang Z, Huang Z L, Zhu C H. Advanced Functional Materials, 2012, 22:218.
[67] Chen Y J, Tian G H, Pan K, Tian C G, Zhou J, Zhou W, Ren Z Y, Fu H G. Dalton Transactions, 2012, 41:1020.
[68] Li X H, Chen G Y, Yang L B, Jin Z, Liu J H. Advanced Functional Materials, 2010, 20:2815.
[69] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277:1078.
[70] 陈丹丹(Chen D D), 辛嘉英(Xin J X), 张兰轩(Zhang L X), 张帅(Zhang S), 王艳(Wang Y). 食品科学(Food Science), 2014,(07):247.
[71] Darbha G K, Ray A, Ray P C. ACS Nano, 2007, 1:208.
[72] Liu D B, Chen W W, Wei J H, Li X B, Wang Z, Jiang X Y. Anal. Chem., 2012, 84:4185.
[73] Sugawa K, Akiyama T, Tanoue Y, Harumoto T, Yanagida S, Yasumori A, Tomita S, Otsuki J. Physical Chemistry Chemical Physics, 2015, 17:21182.
[74] Cha S K, Mun J H, Chang T, Kim S Y, Kim J Y, Jin H M, Lee J Y, Shin J, Kim K H, Kim S O. ACS Nano, 2015, 9:5536.
[75] Zhou Y, Lee C W, Zhang J N, Zhang P. Journal of Materials Chemistry C, 2013, 1:3695.
[76] Zhou Y, Ding R, Joshi P, Zhang P. Analytica Chimica Acta, 2015, 874:49.
[77] Xia W W, Sha J, Fang Y J, Lu R, Luo Y F, Wang Y W. Langmuir, 2012, 28:5444.
[78] Shen W, Lin X, Jiang C Y, Li C Y, Lin H X, Huang J T, Wang S, Liu G K, Yan X M, Zhong Q L, Ren B. Angewandte Chemie-International Edition, 2015, 54:7308.
[79] Lin M, Wang Y Q, Sun X Y, Wang W H, Chen L X. ACS Applied Materials & Interfaces, 2015, 7:7516.
[80] Zong S F, Wang Z Y, Yang J, Wang C L, Xu S H, Cui Y P. Talanta, 2012, 97:368.
[81] Chen B, Meng G W, Huang Q, Huang Z L, Xu Q L, Zhu C H, Qian Y W, Ding Y. ACS Applied Materials & Interfaces, 2014, 6:15667.
[82] Zong S F, Wang Z Y, Chen H, Yang J, Cui Y P. Analytical Chemistry, 2013, 85:2223.
[83] Gunawidjaja R, Peleshanko S, Ko H, Tsukruk V V. Advanced Materials, 2008, 20:1544.
[84] Liu S P, Chen N, Li L X, Pang F F, Chen Z Y, Wang T Y. Optical Materials, 2013, 35:690.
[85] Liu Y T, Zhou J, Wang B B, Jiang T, Ho H P, Petti L, Mormile P. Physical Chemistry Chemical Physics, 2015, 17:6819.
[86] Yang Y, Liu J Y, Fu Z W, Qin D. Journal of the American Chemical Society, 2014, 136:8153.
[87] Shen J L, Su J, Yan J, Zhao B, Wang D F, Wang S Y, Li K, Liu M M, He Y, Mathur S, Fan C H, Song S P. Nano Research, 2015, 8:731.
[88] Lee H M, Lee J H, Jin S M, Suh Y D, Nam J M. Nano Letters, 2013, 13:6113.
[89] Lee J H, Nam J M, Jeon K S, Lim D K, Kim H K, Kwon S H, Lee H M, Suh Y D. ACS Nano, 2012, 6:9574.
[90] Lee J H, Kim G H, Nam J M. J. Am. Chem. Soc., 2012, 134:5456.
[91] Hu C Y, Shen J L, Yan J, Zhong J, Qin W W, Liu R, Aldalbahi A, Zuo X L, Song S P, Fan C H, He D N. Nanoscale, 2016, 8:2090.
[92] Zhao B, Shen J L, Chen S X, Wang D F, Li F, Mathur S, Song S P, Fan C H. Chem. Sci., 2014, 5:4460.
[93] Zheng Y N, Yuan Y L, Chai Y Q, Yuan R. Biosens. Bioelectron., 2016, 79:86.
[94] Pan N, Zhu Y, Wu L L, Xie Z J, Xue F, Peng C F. Analytical Methods, 2016, 8:7531.
[95] Su S, Zhang C, Yuwen LH, Liu X F, Wang L H, Fan C H, Wang L H. Nanoscale, 2016, 8:602.
[96] Zhang P N, Xiahou Y J, Wang J, Hang L H, Wang D Y, Xia H B. Journal of Materials Chemistry A, 2017, 5:6992.
[97] Rodal-Cedeira S, Montes-Garcia V, Polavarapu L, Solis D M, Heidari H, La Porta A, Angiola M, Martucci A, Taboada J M, Obelleiro F, Bals S, Perez-Juste J, Pastoriza-Santos I. Chemistry of Materials, 2016, 28:9169.
[98] Tian Z Q, Ren B, Wu D Y. Journal of Physical Chemistry B, 2002, 106:9463.
[99] Fang P P, Duan S, Lin X D, Anema J R, Li J F, Buriez O, Ding Y, Fan F R, Wu D Y, Ren B, Wang Z L, Amatore C, Tian Z Q. Chemical Science, 2011, 2:531.
[100] Zhu P Y, Shang Y, Tian W Y, Huang K L, Luo Y B, Xu W T. Food Chemistry, 2017, 221:1770.
[101] Abouelnaga M, Lamas A, Guarddon M, Osman M, Miranda J M, Cepeda A, Franco C M. J. Appl. Microbiol., 2016, 121:1745.
[102] De Filippis I, De Andrade C F, Caldeira N, De Azevedo A C, De Almeida A E. Braz. J. Infect. Dis., 2016, 20:335.
[103] Enk M J, Oliveira E Silva G, Rodrigues N B. PLoS One, 2012, 7:e38947.
[104] Raveendran R, Wattal C. Braz. J. Infect. Dis., 2016, 20:235.
[105] Jeong J, Kim H, Lee D J, Jung B J, Lee J B. Nanoscale Research Letters, 2016, 11.
[106] Wen J, Li W S, Li J Q, Tao B B, Xu Y Q, Li H J, Lu A P, Sun S G. Sensors and Actuators B:Chemical, 2016, 227:655.
[107] Deng K Q, Li C X, Huang H W, Li X F. Sensors and Actuators B:Chemical, 2017, 238:1302.
[108] He Y, Yang X, Yuan R, Chai Y Q. Anal. Chem., 2017, 89:2866.
[109] Kordas A, Papadakis G, Milioni D, Champ J, Descroix S, Gizeli E. Sensing and Bio-Sensing Research, 2016, 11:121.
[110] Liu X B, Du C L, Ni D N, Ran Q S, Liu F, Jiang D N, Pu X Y. Anal. Methods, 2016, 8:8280.
[111] Yang J R, Tang M, Diao W, Cheng W B, Zhang Y R, Yan Y. Microchimica Acta, 2016, 183:3061.
[112] Ahmad F, Stedtfeld R D, Waseem H, Williams M R, Cupples A M, Tiedje J M, Hashsham S A. Journal of Microbiological Methods, 2017, 132:27.
[113] Cornelissen J B W J, De Greeff A, Heuvelink A E, Swarts M, Smith H E, Van Der Wal F J. Journal of Dairy Science, 2016, 99:4270.
[114] Yang Q R, Domesle K J, Wang F, Ge B L. BMC Microbiology, 2016, 16:1.
[115] Zhu L J, Xu Y C, Cheng N, Xie P Y, Shao X L, Huang K L, Luo Y B, Xu W T. Sens. Actuator B:Chem., 2017, 242:880.
[116] Hu Y F, Shen Q P, Li W, Liu Z L, Nie Z, Yao S Z. Biosens. Bioelectron., 2015, 63:331.
[117] Liu Y Q, Xiong E H, Li X Y, Li J J, Zhang X H, Chen J H. Biosens. Bioelectron., 2017, 87:970.
[118] Mei C Y, Lin D J, Fan C C, Liu A L, Wang S, Wang J C. Biosens. Bioelectron., 2016, 80:105.
[119] Shi K, Dou B T, Yang J M, Yuan R, Xiang Y. Biosens. Bioelectron., 2017, 87:495.
[120] Xie H, Wang Q, Chai Y Q, Yuan Y L, Yuan R. Biosens. Bioelectron., 2016, 86:630.
[121] Miao P, Tang Y G, Wang B D, Yin J, Ning L M. TrAC Trends in Analytical Chemistry, 2015, 67:1.
[122] Fakruddin M, Mannan K S, Chowdhury A, Mazumdar R M, Hossain M N, Islam S, Chowdhury M A. J. Pharm. Bioallied. Sci., 2013, 5:245.
[123] Sano T, Smith C L, Cantor C R. Science, 1992, 258:120.
[124] Malou N, Raoult D. Trends Microbiol., 2011, 19:295.
[125] Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual, 2001.
[126] Li H K, Huang J H, Lv J H, An H J, Zhang X D, Zhang Z Z, Fan C H, Hu J. Angewandte Chemie-International Edition, 2005, 44:5100.
[127] Lin Y, Li J, Yao J, Liang Y, Zhang J, Zhou Q F, Jiang G B. Chinese Science Bulletin, 2013, 58:4593.
[128] Cui Y, Wang Z, Ma X, Liu J, Cui S. Letters in Applied Microbiology, 2014, 58:163.
[129] Sun R Y, Zhuang H S. Anal. Biochem., 2015, 480:49.
[130] Fire A, Xu S Q. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:4641.
[131] Liu D Y, Daubendiek S L, Zillman M A, Ryan K, Kool E T. Journal of the American Chemical Society, 1996, 118:1587.
[132] Yang C J, Cui L, Huang J, Yan L, Lin X, Wang C, Zhang W Y, Kang H. Biosens. Bioelectron., 2011, 27:119.
[133] 吴阳升(Wu Y S), 罗淑萍(Luo S P). 生物技术(Biotechnology), 2004,(04):76.
[134] 戴婷婷(Dai T T), 陆辰晨(Lu C C), 郑小波(Zheng X B). 南京农业大学学报(Journal of Nanjing Agricultural University), 2015,(05):695
[135] Qiao Y M, Guo Y C, Zhang X E, Zhou Y F, Zhang Z P, Wei H P, Yang R F, Wang D B. Biotechnology Letters, 2007, 29:1939.
[136] Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Applied and Environmental Microbiology, 2003, 69:5023.
[137] Ohtsuka K, Tanaka M, Ohtsuka T, Takatori K, Hara-Kudo Y. Foodborne Pathogens and Disease, 2010, 7:1563.
[138] Zhao X H, Li Y M, Wang L, You L J, Xu Z B, Li L, He X W, Liu Y, Wang J H, Yang L S. Molecular Biology Reports, 2010, 37:2183.
[139] Wang D G, Wang Y Z, Wang J H, Zhang X G, Xiao F G. Milchwissenschaft-Milk Science International, 2011, 66:426.
[140] Zhao X H, Wang L, Li Y M, Xu Z B, Li L, He X W, Liu Y, Wang J H, Yang L S. World Journal of Microbiology & Biotechnology, 2011, 27:181.
[141] Chen S Y, Wang F, Beaulieu J C, Stein R E, Ge B L. Applied and Environmental Microbiology, 2011, 77:4008.
[142] Ye Y X, Wang B, Huang F, Song Y S, Yan H, Alam M J, Yamasaki S, Shi L. Food Control, 2011, 22:438.
[143] Zhao X H, Wang L, Chu J, Li Y M, Li Y Y, Xu Z B, Li L, Shirtliff M E, He X W, Liu Y, Wang J H, Yang L S. Food Science and Biotechnology, 2010, 19:1655.
[144] Yang H, Ma X Y, Zhang X Z, Wang Y, Zhang W. European Food Research and Technology, 2011, 232:769.
[145] Nemoto J, Ikedo M, Kojima T, Momoda T, Konuma H, Hara-Kudo Y. Journal of Food Protection, 2011, 74:1462.
[146] Yamazaki W, Kumeda Y, Uernura R, Misawa N. Food Microbiology, 2011, 28:1238.
[147] Zhao X H, Wang L, Chu J, Li Y Y, Li Y M, Xu Z B, Li L, Shirtliff M E, He X W, Liu Y, Wang J H, Yang L S. Food Science and Biotechnology, 2010, 19:1191.
[148] Draz M S, Lu X N. Theranostics, 2016, 6:522.
[149] Sayad A A, Ibrahim F, Uddin S M, Pei K X, Mohktar M S, Madou M, Thong K L. Sensors and Actuators B:Chemical, 2016, 227:600.
[150] Mikš-Krajnik M, Lim H S Y, Zheng Q W, Turner M, Yuk H G. Food Control, 2016, 60:237.
[151] Yang Q R, Domesle K J, Wang F, Ge B L. BMC Microbiol., 2016, 16:112.
[152] Oh S J, Park B H, Jung J H, Choi G, Lee D C, Kim Do H, Seo T S. Biosens. Bioelectron., 2016, 75:293.
[153] Bollum F J, Potter V R. The Journal of Biological Chemistry, 1958, 233:478.
[154] Fowler J D, Suo Z C. Chemical Reviews, 2006, 106:2092.
[155] Motea E A, Berdis A J. Biochim. Biophys. Acta, 2010, 1804:1151.
[156] Deng G R, Wu R. Nucleic Acids Research, 1981, 9:4173.
[157] Tu C P, Cohen S N. Gene, 1980, 10:177.
[158] Trainor G L, Jensen M A. Nucleic Acids Research, 1988, 16:11846.
[159] Figeys D, Renborg A, Dovichi N J. Analytical Chemistry, 1994, 66:4382.
[160] Chen J H, Zhou S G, Wen J L. Anal. Chem., 2014, 86:3108.
[161] Duan J, Guo Z Y. Chinese Chemical Letters, 2012, 23:225.
[162] Fang Z Y, Huang J, Lie P C, Xiao Z, Ouyang C Y, Wu Q, Wu Y X, Liu G D, Zeng L W. Chemical Communications, 2010, 46:9043.
[163] Guo Z Y, Duan J, Yang F, Li M, Hao T, Wang S, Wei D Y. Talanta, 2012, 93:49.
[164] He Y Q, Zhang X B, Zeng K, Zhang S Q, Baloda M, Gurung A S, Liu G D. Biosens. Bioelectron., 2011, 26:4464.
[165] Torabi S F, Lu Y. Faraday Discuss, 2011, 149:125.
[166] Zhu M Y, Wang Y, Deng Y, Yao L, Adeloju S B, Pan D D, Xue F, Wu Y C, Zheng L. Chen W, Biosens. Bioelectron., 2014, 61:14.
[167] Liu C C, Qiu X B, Ongagna S, Chen D F, Chen Z Y, Abrams W R, Malamud D, Corstjens P L, Bau H H. Lab on a Chip, 2009, 9:768.
[168] Liu J W, Mazumdar D, Lu Y. Angewandte Chemie, 2006, 118:8123.
[169] Liu G D, Mao X, Phillips J A, Xu H, Tan W H, Zeng L W. Analytical Chemistry, 2009, 81:10013.
[170] Xu H, Mao X, Zeng Q X, Wang S F, Kawde A N, Liu G D. Analytical Chemistry, 2009, 81:669.
[171] Mazumdar D, Liu J W, Lu G, Zhou J Z, Lu Y. Chemical Communications, 2010, 46:1416.
[172] Gu M B. Biosensors Based on Aptamers and Enzymes, 1st ed. Berlin:Springer Berlin Heidelberg, 2014. 140.
[173] Palchetti I, Mascini M. Analyst, 2008, 133:846.
[174] Hayat A, Marty J L. Frontiers in Chemistry, 2014, 2:41.
[175] Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J. Biosens. Bioelectron., 2010, 26:1178.
[176] Park K S, Park H G. Current Opinion in Biotechnology, 2014, 28:17.
[177] Sett A, Das S, Bora U. Applied Biochemistry and Biotechnology, 2014, 174:1073.
[178] Zhang X B, Kong R M, Lu Y. In Annual Review of Analytical Chemistry, 2011,(4):105.
[179] Zhou Y Y, Tang L, Zeng G M, Zhang C, Zhang Y, Xie X. Sens. Actuator B:Chem., 2016, 223:280.
[180] Zhu G, Zhang C Y. Analyst, 2014, 139:6326.
[181] Zhao J, Lei Y M, Chai Y Q, Yuan R, Zhuo Y. Biosens. Bioelectron., 2016, 86:720.
[182] Zhao Y, Qiang H, Chen Z B. Microchimica Acta, 2016, 184:107.
[183] Wu Y G, Zhan S S, Wang F Z, He L, Zhi W T, Zhou P. Chemical Communications, 2012, 48:4459.
[184] Afkhami A, Hashemi P, Bagheri H, Salimian J, Ahmadi A, Madrakian T. Biosens. Bioelectron., 2017, 93:124.
[185] Lai W Q, Wei Q H, Xu M D, Zhuang J Y, Tang D P. Biosens. Bioelectron., 2017, 89:645.
[186] Lv L, Li D H, Cui C B, Zhao Y Y, Guo Z J. Biosens. Bioelectron., 2017, 87:136.
[187] Hao N, Jiang L, Qian J, Wang K. Journal of Electroanalytical Chemistry, 2016, 781:332.
[188] Mahmud G, Campbell C J, Bishop K J M, Komarova Y A, Chaga O, Soh S, Huda S, Kandere-Grzybowska K, Grzybowski B A. Nature Physics, 2009, 5:606.
[189] Qu W S, Liu Y Y, Liu D B, Wang Z, Jiang X Y. Angewandte Chemie-International Edition, 2011, 50:3442.
[190] Sun J F, Guo L, Bao Y, Xie J W. Biosens. Bioelectron., 2011, 28:152.
[191] Pavlov V, Xiao Y, Willner I. Nano Letters, 2005, 5:649.
[192] Fu G L, Chen W W, Yue X L, Jiang X Y. Talanta, 2013, 103:110.
[193] Fang Q K, Wang L M, Cheng Q, Cai J, Wang Y L, Yang M M, Hua X D, Liu F Q. Anal. Chim. Acta, 2015, 881:82.
[194] Yang Y M, Liu X J, Wu M, Wang X Z, Hou T, Li F. Sensors and Actuators B:Chemical, 2016, 236:597.
[195] Zhang C H, Ning K, Zhang W W, Guo Y J, Chen J, Liang C. Environmental Science-Processes & Impacts, 2013, 15:709.
[196] Bogialli S, Capitolino V, Curini R, Di Corcia A, Nazzari M, Sergi M. Journal of Agricultural and Food Chemistry, 2004, 52:3286.
[197] Wang X Z, Dong S S, Gai P P, Duan R, Li F. Biosens. Bioelectron., 2016, 82:49.
[198] Yan Z D, Gan N, Li T H, Cao Y T, Chen Y J. Biosens. Bioelectron., 2016, 78:51.
[199] Liu S, Wang Y, Xu W, Leng X Q, Wang H Z, Guo Y N, Huang J D. Biosens. Bioelectron., 2017, 88:181.
[200] Cho I H, Radadia A D, Farrokhzad K, Ximenes E, Bae E, Singh A K, Oliver H, Ladisch M, Bhunia A, Applegate B, Mauer L, Bashir R, Irudayaraj J. Annu. Rev. Anal. Chem., 2014, 7:65.
[201] Melo A M, Alexandre D L, Furtado R F, Borges M F, Figueiredo E A, Biswas A, Cheng H N, Alves C R. Appl. Microbiol. Biotechnol., 2016, 100:5301.
[202] Pérez-López B, Merkoçi A. Trends in Food Science & Technology, 2011, 22:625.
[203] Suaifan G A, Alhogail S, Zourob M. Biosens. Bioelectron., 2017, 92:702.
[204] Teng J, Yuan F, Ye Y W, Zheng L, Yao L, Xue F, Chen W, Li B G. Front Microbiol., 2016, 7:1426.
[205] Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. Biotechnol. Adv., 2010, 28:232.
[206] Wu S J, Duan N, Gu H J, Hao L, Ye H, Gong W, Wang Z P. Toxins, 2016, 8:176.
[207] Wu L, Xiao X Y, Chen K, Yin W M, Li Q, Wang P, Lu Z C, Ma J, Han H Y. Biosens. Bioelectron., 2017, 92:321.
[208] Zhang L S, Huang R, Liu W P, Liu H X, Zhou X M, Xing D. Biosens. Bioelectron., 2016, 86:1.
[209] Li F, Xie G Y, Zhou B Q, Yu P, Yu S, Aguilar Z P, Wei H, Xu H Y. LWT-Food Science and Technology, 2016, 74:176.
[211] Guo Q, Han J J, Shan S, Liu D F, Wu S S, Xiong Y H, Lai W H. Biosens. Bioelectron., 2016, 86:990.
[211] Koopmans M, Duizer E. International Journal of Food Microbiology, 2004, 90:23.
[212] Le Guyader F S, Parnaudeau S, Schaeffer J, Bosch A, Loisy F, Pommepuy M, Atmar R L. Appl. Environ. Microbiol., 2009, 75:618.
[213] Loisy F, Atmar R L, Guillon P, Le Cann P, Pommepuy M, Le Guyader F S. J. Virol. Methods., 2005, 123:1.
[214] Nishida T, Kimura H, Saitoh M, Shinohara M, Kato M, Fukuda S, Munemura T, Mikami T, Kawamoto A, Akiyama M, Kato Y, Nishi K, Kozawa K, Nishio O. Applied and Environmental Microbiology, 2003, 69:5782.
[215] Kim H Y, Kwak I S, Hwang I G, Ko G. J. Virol. Methods., 2008, 153:104.
[216] Le Guyader F S, Mittelholzer C, Haugarreau L, Hedlund K O, Alsterlund R, Pommepuy M, Svensson L. Int. J. Food Microbiol., 2004, 97:179.
[217] Brassard J, Seyer K, Houde A, Simard C, Trottier Y L. J. Virol. Methods., 2005, 123:163.
[218] Li Y Y, Zhang C S, Xing D. Anal. Biochem., 2011, 415:87.
[219] Zhang C S, Li Y Y, Wang H Y. Chinese Journal of Analytical Chemistry, 2011, 39:645.
[220] Blaise-Boisseau S, Hennechart-Collette C, Guillier L, Perelle S. J. Virol. Methods., 2010, 166:48.
[221] Casas N, Amarita F, De Maranon I M. Int. J. Food Microbiol., 2007, 120:179.
[222] Dubois E, Hennechart C, Merle G, Burger C, Hmila N, Ruelle S, Perelle S, Ferre V. Int. J. Food Microbiol., 2007, 117:141.
[223] Guevremont E, Brassard J, Houde A, Simard C, Trottier Y L. J. Virol. Methods., 2006, 134:130.
[224] Love D C, Casteel M J, Meschke J S, Sobsey M D. Int. J. Food Microbiol., 2008, 126:221.
[225] Buates S, Bantuchai S, Sattabongkot J, Han E T, Tsuboi T, Udomsangpetch R, Sirichaisinthop J, Tan Ariya P. Parasitol. Int., 2010, 59:414.
[226] Caipang C M, Kulkarni A, Brinchmann M F, Korsnes K, Kiron V. Vet. J., 2010, 184:357.
[227] Chen J H, Lu F, Lim C S, Kim J Y, Ahn H J, Suh I B, Takeo S, Tsuboi T, Sattabongkot J, Han E T. Acta Trop., 2010, 113:61.
[228] Gao M, Cui J, Ren Y D, Suo S, Li G X, Sun X J, Su D D, Opriessnig T, Ren X F. J. Virol. Methods., 2012, 185:18.
[229] Wang X, Zhu J P, Zhang Q, Xu Z G, Zhang F, Zhao Z H, Zheng W Z, Zheng L S. J. Virol. Methods, 2012, 179:330.
[230] Strydom P E, Frylinck L, Montgomery J L, Smith M F. Meat Science, 2009, 81:557.
[231] Qu X L, Lin H, Du S Y, Sui J X, Zhang X L, Cao L M. Food Analytical Methods, 2016, 9:2531.
[232] Wang P L, Wang R G, Zhang W, Su X O, Luo H F. Biosens. Bioelectron., 2016, 77:866.
[233] Yang Y Y, Zhang H, Huang C S, Yang D P, Jia N Q. Biosens. Bioelectron., 2017, 89:461.
[234] Luo Y L, Liu X, Gao H T, Li Y, Xu J Y, Shen F, Sun C Y. Journal of Nanoscience and Nanotechnology, 2016, 16:548.
[235] Bergwerff A A, Scherpenisse P. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2003, 788:351.
[236] Scherpenisse P, Bergwerff A A. Analytica. Chimica. Acta, 2005, 529:173.
[237] Fallah A A, Barani A. Food Control, 2014, 40:100.
[238] Lopez Gutierrez N, Romero Gonzalez R, Plaza Bolanos P, Luis Martinez-Vidal J, Garrido-Frenich A. Food Analytical Methods, 2013, 6:406.
[239] Jiang Y S, Chen L, Hu K, Yu W J, Yang X N, Lu L Q. Journal of Ocean University of China, 2014, 14:340.
[240] Jester E L E, Abraham A, Wang Y S, El Said K R, Plakas S M. Food Chemistry, 2014, 145:593.
[241] Liu Y C, Jiang W, Chen Y J, Xiao Y, Shi J L, Qiao Y B, Zhang H J, Li T, Wang Q. Journal of Immunological Methods, 2013, 395:29.
[242] Peng J, Cheng G Y, Huang L L, Wang Y L, Hao H H, Peng D P, Liu Z L, Yuan Z H. Analytical and Bioanalytical Chemistry, 2013, 405:8925.
[243] Chianella I, Guerreiro A, Moczko E, Caygill J S, Piletska E V, Sansalvador I M P D V, Whitcombe M J, Piletsky S A. Analytical Chemistry, 2013, 85:8462.
[244] Tang Y W, Fang G Z, Wang S, Sun J W, Qian K. Journal of Aoac International, 2013, 96:453.
[245] Li L, Lin Z Z, Peng A H, Zhong H P, Chen X M, Huang Z Y. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1035:25.
[246] Zhang Y Y, Yu W S, Pei L, Lai K Q, Rasco B A, Huang Y Q. Food Chem., 2015, 169:80.
[247] Zhang Y Y, Lai K Q, Zhou J J, Wang X C, Rasco B A, Huang Y Q. Journal of Raman Spectroscopy, 2012, 43:1208
[248] Feng X B, Gan N, Zhang H R, Yan Q, Li T H, Cao Y T, Hu F T, Yu H W, Jiang Q L. Biosens. Bioelectron., 2015, 74:587.
[249] Lu Y, Xia Y Q, Liu G Z, Pan M F, Li M J, Lee N A, Wang S. Crit. Rev. Anal. Chem., 2017, 47:51.
[250] Chen K H, Shen Z G, Luo J W, Wang X Y, Sun R C. Applied Surface Science, 2015, 351:466.
[251] Shimizu E, Kato H, Nakagawa Y, Kodama T, Futo S, Minegishi Y, Watanabe T, Akiyama H, Teshima R, Furui S, Hino A, Kitta K. Journal of Agricultural and Food Chemistry, 2008, 56:5521.
[252] Mavropoulou A K, Koraki T, Ioannou P C, Christopoulos T K. Analytical Chemistry, 2005, 77:4785.
[253] Fu W, Zhu P, Wang C, Huang K, Du Z, Tian W, Wang Q, Wang H, Xu W, Zhu S. Sci. Rep., 2015, 5:12715.
[254] Peng C, Wang P F, Xu X L, Wang X F, Wei W, Chen X Y, Xu J F. Springerplus, 2016, 5:889.
[255] Lee D, La Mura M, Allnutt T R, Powell W. BMC Biotechnology, 2009, 9:1.
[256] Chen L L, Guo J C, Wang Q D, Kai G Y, Yang L T. Journal of Agricultural and Food Chemistry, 2011, 59:5914.
[257] Lee S H. Journal of the Science of Food and Agriculture, 2014, 94:2856.
[258] Fraiture M A, Herman P, De Loose M, Debode F, Roosens N H. Trends Biotechnol., 2017, 35:508.
[259] Huang X, Zhai C C, You Q M, Chen H J. Analytical and Bioanalytical Chemistry, 2014, 406:4243.
[260] Tao C Y, Zhang Q D, Feng N, Shi D S, Liu B. J. Dairy Sci., 2016, 99:1773.
[261] Li Y Q, Sun L, Qian J, Long L L, Li H N, Liu Q, Cai J R, Wang K. Biosens. Bioelectron., 2017, 92:26.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[6] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[7] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[8] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[9] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[10] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[11] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[12] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[13] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[14] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[15] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.