English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 496-508 DOI: 10.7536/PC220917 前一篇   

• 综述 •

抗病毒涂层

刘峻, 叶代勇*()   

  1. 华南理工大学化学与化工学院 化学工程系 广州 510640
  • 收稿日期:2022-09-19 修回日期:2022-11-24 出版日期:2023-03-24 发布日期:2023-02-16
  • 作者简介:

    叶代勇 主要研究领域为精细化学品的合成、结构、功能、应用及其精细化学工程,利用分子信息化学、多尺度方法和超分子自组装等技术研究应用高分子的制备、结构、功能和应用机理,研究高性能乳液的合成、水性涂料的改性与制备以及紫外光固化涂料等。

Research Progress of Antiviral Coatings

Liu Jun, Ye Daiyong()   

  1. Department of Chemical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510640, China
  • Received:2022-09-19 Revised:2022-11-24 Online:2023-03-24 Published:2023-02-16
  • Contact: *e-mail: cedyye@scut.edu.cn

随着COVID-19在全世界范围内的大规模传播,对世界人民的身体健康造成了严重的损害,人们认识到病毒除了可以通过各种飞沫传播外,还会因人体接触到受污染的表面而传播。然而,作为常用的表面抗病毒手段,消毒剂存在不能持续灭活病毒的缺点,这不利于抑制各种传染性病毒的传播。因此,全球迫切需要保护日常物体表面免受病毒的污染,以消除各种呼吸道病毒(如新型冠状病毒SARS-CoV-2)的传播。从这个角度出发,设计开发出有效的抗病毒涂层是十分重要的。本文从不同类型的抗病毒涂层出发,针对新型冠状病毒,探讨了纳米材料抗病毒涂层和聚合物抗病毒涂层的工作机制、性能评价方法、加工技术、实际应用和研究进展,还提出了一些策略以设计出更有效的抗病毒涂层。尽管其中一些抗病毒涂层还在实验阶段,但其在抗病毒方面已表现出巨大的潜力。

With the large-scale spread of COVID-19 around the world, it has caused serious damage to the health of people around the world. In addition to being transmitted by various droplets, viruses can also be transmitted by human touch of contaminated surfaces. However, as a commonly used surface antiviral method, disinfectants have the disadvantage of discontinuously inactivating viruses, which is bad for inhibiting the spread of various infectious viruses. Therefore, it is urgent to protect the surface of daily objects from virus pollution to eliminate the spread of various respiratory viruses (such as Corona Virus Disease 2019, SARS-CoV-2). From this point of view, it is very important to design and develop effective antiviral coatings. This paper discusses the working mechanisms, performance evaluation methods, processing technologies, practical applications and research progress of nanoparticle antiviral coatings and polymer antiviral coatings for SARS-CoV-2, and also proposes some strategies to design more effective antiviral coatings from the perspective of different types of antiviral coatings. Although some of these antiviral coatings are still in the experimental stage, they still show great potential in the antiviral field.

Contents

1 Introduction

2 Antiviral mechanism

2.1 Direct inactivation of virus

2.2 Inhibiting virus infection of host cells

2.3 Inhibition of virus proliferation

3 Antiviral coatings

3.1 Nanomaterial antiviral coatings

3.2 Antiviral polymer coatings

4 Evaluation methods of antiviral coatings

5 Processing technologies of antiviral coatings

6 Practical applications of antiviral coatings

6.1 Antivirus mask

6.2 Antivirus fabrics

6.3 Surface of other solid objects

7 Conclusion and outlook

()
图1 冠状病毒的结构[1]
Fig. 1 Structure of coronavirus[1]. Copyright 2020, American Chemical Society
图2 在太阳光照射下,通过光热、光催化和自清洁过程使呼吸飞沫中的病毒失活的示意图[16]
Fig. 2 Schematic drawing of inactivation of virus in respiratory droplets by photothermal effect, photocatalytic effect and self-cleaning under solar irradiation[16]. Copyright 2020, American Chemical Society
图3 噬菌体MS2(病毒)、CuO、Cu2O和Cu的zeta电位曲线[18]
Fig. 3 Comparison of zeta potential curves for MS2 bacteriophage (virus), CuO, Cu2O and Cu[18]. Copyright 2019, American Chemical Society
图4 电纺纤维的SEM图像:(A)不含纳米Ag(PHBV18),(B)具有纳米Ag的(PHVB18/纳米Ag),(C)纤维的尺寸分布[21]
Fig. 4 SEM images of electrospun fibers, (A)without AgNP (PHBV18), (B) with AgNP (PHVB18/AgNP), and(C)size distribution of fibers[21]. Copyright 2017, Elsevier
图5 Ag2S 纳米簇抗病毒活性的潜在机制[23]
Fig. 5 Possible mechanisms of the antiviral activity of Ag2S NCs[23]. Copyright 2018, American Chemical Society
图6 纳米ZnO的抗病毒机制[24]
Fig. 6 Antiviral mechanism of nano ZnO[24]. Copyright 2019, Advances in Nutrition
图7 纳米ZnO的SEM图像[25]
Fig. 7 SEM images of nano ZnO[25]. Copyright 2022, Coatings
图8 (a)纳米ZnO和(b)PEG-ZnO纳米颗粒的FE-SEM图,(c)PEG-ZnO纳米颗粒的TEM图[26]
Fig. 8 FE-SEM images of ZnO-NPs (a) and ZnO-PEG-NPs (b); TEM image of ZnO-PEG-NPs (c)[26]. Copyright 2019, Springer Nature
图9 (a)纳米ZnO、(b)PEG-ZnO纳米颗粒、(c)聚乙二醇和(d)奥司他韦对MDCK-SIAT1细胞的细胞毒性[26]
Fig. 9 Cytotoxicity of ZnO-NPs (a), ZnO-PEG-NPs (b), polyethylene glycol (c), and oseltamivir (d) on MDCK-SIAT1 cells[26]. Copyright 2019, Springer Nature
图10 实时PCR测定四种化合物对H1N1流感病毒的抑制率[26]
Fig. 10 The inhibitory rates of the four compounds against H1N1 influenza virus determined by Real-Time PCR assay[26]. Copyright 2019, Springer Nature
图11 灭活各种变异株:(a)不同变异株在可见光照射下的病毒滴度变化;(b)Delta变异株的病毒滴度的变化[29]
Fig. 11 Inactivation of various types of variants. (a) changes of virus titer of different variants under visible light irradiation and (b) changes of virus titer of Delta variant[29]. Copyright 2022, Springer Nature
表1 碳基抗病毒纳米材料研究进展
Table 1 Progress of carbon-based antiviral nanomaterials
表2 2D MXene在抗病毒方面的研究进展
Table 2 Research progress of 2D MXene in anti-virus
图12 聚阳离子涂层灭活包膜病毒的机理示意图[46]
Fig. 12 Mechanism of enveloped virus inactivation by polycation coating[46]. Copyright 2011, Proceedings of the National Academy of Sciences
表3 聚合物抗病毒涂层
Table 3 Polymer antiviral coatings
图13 表面涂层抗病毒实验的示意图[54]
Fig. 13 Schematic representation of an antiviral assay for surface coatings[54]. Copyright 2022, ACS Applied Bio Materials
图14 石墨烯嵌入碳膜口罩的制备流程:(a) GNEC薄膜的沉积过程,(b) GNEC口罩的制造工艺[57]
Fig. 14 Preparation process of graphene nanosheet-embedded carbon (GNEC) film mask. (a) Deposition process of GNEC film. (b) Fabrication process of the GNEC mask[57]. Copyright 2020, Nano Research
图15 浸涂在(a) 0.1 mg/mL, (b) 0.25 mg/mL, (c) 0.5 mg/mL, (d) 1 mg/mL Cu@ZIF-8 NWs分散体中的面具过滤器的SEM图像[55]
Fig. 15 SEM images of face mask filter coated by dipping in dispersions of a) 0.1 mg/mL, b) 0.25 mg/mL, c) 0.5 mg/mL, and d) 1 mg/mL Cu@ZIF-8 NWs[55]. Copyright 2021, Advanced Functional Materials
图16 负载有纳米Ag的单独包装湿巾[58]
Fig. 16 Individual packages of the wet wipes loaded with the silver nanoparticles[58]. Copyright 2021, International Journal of Biological Macromolecules
图17 用纳米Ag处理的棉纱制成的抗菌和抗病毒冬季毛衣[58]
Fig. 17 Antimicrobial and antiviral winter sweater made of cotton yarns treated with AgNPs[58]. Copyright 2021, International Journal of Biological Macromolecules
[15]
Minoshima M, Lu Y, Kimura T, Nakano R, Ishiguro H, Kubota Y, Hashimoto K, Sunada K. Journal of Hazardous Materials., 2016, 312: 1.

doi: S0304-3894(16)30238-2     pmid: 27015373
[16]
Kumar S, Karmacharya M, Joshi S R, Gulenko O, Park J, Kim G H, Cho Y K. Nano Lett., 2021, 21(1): 337.

doi: 10.1021/acs.nanolett.0c03725     URL    
[17]
Castro Mayorga J L, Fabra Rovira M J, Cabedo Mas L, Sánchez Moragas G, LagarÓn Cabello J M. J. Appl. Polym. Sci., 2018, 135(2): 45673.

doi: 10.1002/app.45673     URL    
[18]
Mazurkow J M, Yüzbasi N S, Domagala K W, Pfeiffer S, Kata D, Graule T. Environ. Sci. Technol., 2020, 54(2): 1214.

doi: 10.1021/acs.est.9b05211     pmid: 31855599
[19]
Rai M, Deshmukh S D, Ingle A P, Gupta I R, Galdiero M, Galdiero S. Critical reviews in microbiology., 2016, 42(1): 46.

doi: 10.3109/1040841X.2013.879849     URL    
[20]
Chen Y N, Hsueh Y H, Hsieh C T, Tzou D Y, Chang P L. International Journal of Environmental Research and Public Health, 2016, 13(4): 430.

doi: 10.3390/ijerph13040430     URL    
[21]
Castro-Mayorga J L, Randazzo W, Fabra M J, Lagaron J M, Aznar R, Sánchez G. LWT-Food Science and Technology, 2017, 79: 503.

doi: 10.1016/j.lwt.2017.01.065     URL    
[22]
He Q, Lu J, Liu N, Lu W Q, Li Y, Shang C, Li X, Hu L G, Jiang G B. Nanomaterials, 2022, 12(6): 990.

doi: 10.3390/nano12060990     URL    
[23]
Du T, Liang J G, Dong N, Lu J, Fu Y Y, Fang L R, Xiao S B, Han H Y. ACS Appl. Mater. Interfaces, 2018, 10(5): 4369.

doi: 10.1021/acsami.7b13811     URL    
[24]
Read S A, Obeid S, Ahlenstiel C, Ahlenstiel G. Advances in nutrition., 2019, 10(4): 696.

doi: 10.1093/advances/nmz013     URL    
[25]
El-Megharbel S M, Alsawat M, Al-Salmi F A, Hamza R Z. Coatings, 2021, 11(4): 388.

doi: 10.3390/coatings11040388     URL    
[26]
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani S J, Esghaei M, Pirhajati-Mahabadi V, Monavari S H, Ataei-Pirkooh A. Journal of Biomedical Science, 2019, 26(1): 70.

doi: 10.1186/s12929-019-0563-4     pmid: 31500628
[27]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117(17): 11302.

doi: 10.1021/acs.chemrev.7b00161     URL    
[28]
Boldogk? i Z, Csabai Z, Tombácz D, Janovák L, Balassa L, Deák Á, TÓth P S, Janáky C, Duda E, DÉkány I. Front. Bioeng. Biotechnol., 2021, 9: 709462.
[29]
Nakano R, Yamaguchi A, Sunada K, Nagai T, Nakano A, Suzuki Y, Yano H, Ishiguro H, Miyauchi M. Scientific Reports., 2022, 12(1): 1.

doi: 10.1038/s41598-021-99269-x    
[30]
Innocenzi P, Stagi L. Chem. Sci., 2020, 11(26): 6606.

doi: 10.1039/d0sc02658a     pmid: 33033592
[31]
Ayub M, Othman M H D, Khan I U, Yusop M Z M, Kurniawan T A. Surfaces and Interfaces., 2021, 27: 101460.

doi: 10.1016/j.surfin.2021.101460     URL    
[1]
Eldin A Osman E, Toogood P L, Neamati N. ACS Infect. Dis., 2020, 6(7): 1548.

doi: 10.1021/acsinfecdis.0c00224     URL    
[2]
Mehraeen E, Salehhi M A, Behnezhad F, Moghaddam H R, SeyedAhmad S. Infectious Disorders-Drug Targets., 2021, 21(6): 27.
[3]
Ghosh S K. Nova Surface-Care Centre Pvt: Maharashtra, India, 2020.
[4]
Huang H, Fan C, Li M, Nie H L, Wang F B, Wang H, Wang R, Xia J, Zheng X, Zuo X, Huang J. ACS Nano, 2020, 14(4): 3747.

doi: 10.1021/acsnano.0c02618     URL    
[5]
Reina G, Peng S Y, Jacquemin L, Andrade A F, Bianco A.. ACS Nano, 2020, 14(8): 9364.

doi: 10.1021/acsnano.0c04117     URL    
[6]
Moschini E, Colombo G, Chirico G, Capitani G, Dalle-Donne I, Mantecca P. Scientific Reports, 2023, 13(1): 2326.

doi: 10.1038/s41598-023-28958-6    
[7]
Innocenzi P, Stagi L. Chemical Science., 2020, 11(26): 6606.

doi: 10.1039/d0sc02658a     pmid: 33033592
[8]
Cagno V, Gasbarri M, Medaglia C, Gomes D, Clement S, Stellacci F, Tapparel C. Antimicrobial Agents and Chemotherapy, 2020, 64.
[9]
Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A. Viruses, 2019, 11(8): 732.

doi: 10.3390/v11080732     URL    
[10]
Tong T, Hu H G, Zhou J W, Deng S F, Zhang X T, Tang W T, Fang L R, Xiao S B, Liang J G. Small, 2020, 16(13): 1906206.
[11]
Turnlund J R. Am. J. Clin. Nutr., 1998, 67(5): 960S.
[12]
Tavakoli A, Hashemzadeh M S. Journal of Virological Methods, 2020, 275: 113688.

doi: 10.1016/j.jviromet.2019.113688     URL    
[13]
Maruzuru Y, Shindo K, Liu Z M, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y. Journal of Virology, 2014, 88(13): 7445.

doi: 10.1128/JVI.01057-14     pmid: 24741100
[14]
Chatterjee A K, Chakraborty R, Basu T. Nanotechnology, 2014, 25(13): 135101.

doi: 10.1088/0957-4484/25/13/135101     URL    
[32]
Galante A J, Yates K A, Romanowski E G, Shanks R M Q, Leu P W. ACS Applied Nano Materials, 2022, 5(1): 718.

doi: 10.1021/acsanm.1c03448     URL    
[33]
Adcock A F, Wang P, Ferguson I S, Obu S C, Sun Y P, Yang L J. ACS Applied Bio Materials, 2022, 5(7): 3158.

doi: 10.1021/acsabm.2c00153     URL    
[34]
Kraevaya O A, Bolshakova V S, Peregudov A S, Chernyak A V, Slesarenko N A, Markov V Y, Lukonina N S, Martynenko V M, Sinegubova E O, Shestakov A F, Zarubaev V V, Schols D, Troshin P A. Organic Letters, 2021, 23(18): 7226.

doi: 10.1021/acs.orglett.1c02623     pmid: 34468156
[35]
Lee S, Nam J S, Han J, Zhang Q, Kauppinen E I, Jeon I. ACS Applied Nano Materials, 2021, 4(8): 8135.

doi: 10.1021/acsanm.1c01386     URL    
[36]
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani K K. Nano Today, 2020, 35: 100982.
[37]
Zandi M, Hosseini F, Adli A H, Salmanzadeh S, Behboudi E, Halvaei P, Khosravi A, Abbasi S. Biomedicine © Pharmacotherapy, 2022, 156: 113868.
[38]
Cui W, Wang Y, Luo C, Xu J, Wang K, Han H, Yao K. Materials Today Nano, 2022, 18: 100218.
[39]
Neal C J, Fox C R, Sakthivel T S, Kumar U, Fu Y, Drake C, Parks G D, Seal S. ACS Nano, 2021, 15(9): 14544.

doi: 10.1021/acsnano.1c04142     URL    
[40]
Ito T, Sunada K, Nagai T, Ishiguro H, Nakano R, Suzuki Y, Nakano A, Yano H, Isobe T, Matsushita S, Nakajima A. Materials Letters, 2021, 290: 129510.

doi: 10.1016/j.matlet.2021.129510     URL    
[41]
Huang Y, Yang C, Xu X, Xu W, Liu S. Acta Pharmacologica Sinica, 2020, 41(9): 1141.

doi: 10.1038/s41401-020-0485-4     pmid: 32747721
[42]
Huang Z M, Cui X, Li S L, Wei J C, Li P, Wang Y T, Lee C S. Nanophotonics, 2020, 9(8): 2233.

doi: 10.1515/nanoph-2019-0571     URL    
[43]
Unal M A, Bayrakdar F, Fusco L, Besbinar O, Shuck C E, Yalcin S, Erken M T, Ozkul A, Gurcan C, Panatli O, Summak G Y, Gokce C, Orecchioni M, Gazzi A, Vitale F, Somers J, Demir E, Yildiz S S, Nazir H, Grivel J C, Yilmazer A. Nano Today, 2021, 38: 101136.

doi: 10.1016/j.nantod.2021.101136     URL    
[44]
Tong T, Tang W, Xiao S, Liang J. Advanced Nobiomed Research, 2022, 2(10): 2200067.
[45]
Zhang G F, Cong Y L, Liu F L, Sun J F, Zhang J T, Cao G L, Zhou L Q, Yang W J, Song Q L, Wang F J, Liu K, Qu J, Wang J, He M, Feng S, Baimanov D, Xu W, Luo R H, Long X Y, Liao S M, Fan Y P, Li Y F, Li B, Shao X M, Wang G C, Fang L J, Wang H Y, Yu X F, Chang Y Z, Zhao Y L, Li L, Yu P, Zheng Y T, Boraschi D, Li H C, Chen C Y, Wang L M, Li Y. Nat. Nanotechnol., 2022, 17(9): 993.

doi: 10.1038/s41565-022-01177-2    
[46]
Hsu B B, Wong S Y, Hammond P T, Klibanov A M. Proceedings of the National Academy of Sciences, 2011, 108(1): 61.

doi: 10.1073/pnas.1017012108     URL    
[47]
Larson A M, Hsu B B, Rautaray D, Haldar J, Chen J Z, Klibanov A M. Biotechnol. Bioeng., 2011, 108(3): 720.

doi: 10.1002/bit.22967     URL    
[48]
Qiu Q H, Yang C, Wang Y M, Alexander C A, Yi G S, Zhang Y G, Qin X H, Yang Y Y. Biomaterials, 2022, 284: 121470.

doi: 10.1016/j.biomaterials.2022.121470     URL    
[49]
Sorci M, Fink T D, Sharma V, Singh S, Chen R, Arduini B L, Dovidenko K, Heldt C L, Palermo E F, Zha R H. ACS Applied Materials © Interfaces, 2022, 14(22): 25135.
[50]
Ikner L A, Torrey J R, Gundy P M, Gerba C P. American Journal of Infection Control., 2021, 49(12): 1569.

doi: 10.1016/j.ajic.2021.08.031     URL    
[51]
Ghosh S, Mukherjee R, Basak D, Haldar J. ACS Applied Materials © Interfaces, 2020, 12(25): 27853.
[52]
Li R, Hou Y, Huang J, Pan W, Ma Q, Shi Y, Li C, Zhao J, Jia Z, Jiang H, Zheng K, Huang S, Dai J, Li X, Hou X, Wang L, Zhong N, Yang Z. Pharmacological Research, 2020, 156: 104761.

doi: 10.1016/j.phrs.2020.104761     URL    
[53]
Ou X Y, Liu Y, Lei X B, Li P, Mi D, Ren L L, Guo L, Guo R X, Chen T, Hu J X, Xiang Z C, Mu Z X, Chen X, Chen J Y, Hu K P, Jin Q, Wang J W, Qian Z H. Nature Communications, 2021, 12(1): 2144.

doi: 10.1038/s41467-021-22614-1    
[54]
Sano M, Morisita K, Onizawa Y, Takagi T, Sumaru K. ACS Applied Bio Materials, 2022, 5(11): 5174.

doi: 10.1021/acsabm.2c00613     URL    
[55]
Kumar A, Sharma A, Chen Y, Jones M M, Vanyo S T, Li C N, Visser M B, Mahjan S D, Sharma R K, Swihart MT. Adv. Funct. Mater., 2021, 31: 2008054.
[56]
Moreno M A, Bojorges H, Falco I, Sanchez G, Lopez-Carballor G, Lopez-Rubio A, Zampini I C, Isla M a I, Fabra M J. Food Hydrocolloids, 2020, 102: 105595.

doi: 10.1016/j.foodhyd.2019.105595     URL    
[57]
Lin Z Z, Wang Z, Zhang X, Diao D F. Nano Research, 2021, 14(4): 1110.

doi: 10.1007/s12274-020-3158-1    
[58]
Hamouda T, Ibrahim H M, Kafafy H H, Mashaly H M, Mohamed N H, Aly N M. International Journal of Biological Macromolecules, 2021, 181: 990.

doi: 10.1016/j.ijbiomac.2021.04.071     pmid: 33864870
[59]
Karagoz S, Kiremitler N B, Sarp G, Pekdemir S, Salem S, Goksu A G, Onses M S, Sozdutmaz I, Sahmetlioglu E, Ozkara e s, Ceylan A, Yilmaz E. ACS Appl. Mater. Interfaces, 2021, 13: 5678.

doi: 10.1021/acsami.0c15606     URL    
[60]
Das Jana I, Kumbhakar P, Banerjee S, Gowda C C, Kedia N, Kuila S K, Banerjee S, Das N C, Das A K, Mnana I, Tiwary C S, Mondal A. ACS Appl. Nano Mater., 2021, 4: 352.

doi: 10.1021/acsanm.0c02713     URL    
[1] 金诗萍, 孙莹, 张雪勤. 聚合物水凝胶材料的透氧性能[J]. 化学进展, 2023, 35(9): 1304-1312.
[2] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[3] 刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾. 手性等离子体核壳纳米结构的设计及应用[J]. 化学进展, 2023, 35(8): 1168-1176.
[4] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[5] 张文博, 王佳宁, 卫林峰, 金花, 鲍艳, 马建中. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076.
[6] 周文英, 王芳, 杨亚亭, 王蕴, 赵莹莹, 张亮青. 本征导热聚合物研究:机理、结构与性能及应用[J]. 化学进展, 2023, 35(7): 1106-1122.
[7] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[8] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[9] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[10] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[11] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[12] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[13] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[14] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[15] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
阅读次数
全文


摘要

抗病毒涂层