English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1106-1122 DOI: 10.7536/PC221102 前一篇   

• 综述 •

本征导热聚合物研究:机理、结构与性能及应用

周文英1,*(), 王芳1, 杨亚亭1, 王蕴1, 赵莹莹2, 张亮青2   

  1. 1 西安科技大学化学与化工学院 西安 710054
    2 西安科技大学材料科学与工程学院 西安 710054
  • 收稿日期:2022-06-17 修回日期:2022-09-13 出版日期:2023-07-24 发布日期:2022-10-30
  • 基金资助:
    国家自然科学基金(52277028); 国家自然科学基金(51577154); 陕西省自然科学基础项目(2022-JM186); 陕西省自然科学基础项目(2021JQ-566); 陕西省教育厅科研计划项目(21JK0756)

Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications

Wenying Zhou1(), Fang Wang1, Yating Yang1, Yun Wang1, Yingying Zhao2, Liangqing Zhang2   

  1. 1 School of Chemistry & Chemical Engineering, Xi'an University of Science and Technology,Xi'an 710054, China
    2 School of Materials Science and Engineering, Xi'an University of Science and Technology,Xi'an 710054, China
  • Received:2022-06-17 Revised:2022-09-13 Online:2023-07-24 Published:2022-10-30
  • Contact: * e-mail: wyzhou2004@163.com
  • Supported by:
    National Natural Science Foundation of China(52277028); National Natural Science Foundation of China(51577154); Natural Science Basic Research Plan in Shaanxi Province of China(2022-JM186); Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-566); Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0756)

散热已成为制约超高频、大功率微电子器件和高电压电气绝缘设备日益微型化的技术瓶颈和发展面临的重要挑战,急需高性能的导热材料实现快速散热。相比导热高分子复合材料,本征结构的导热高分子材料因同步的高导热及高绝缘强度、优异柔韧性、轻质高强等优异的综合性能及优势受到了国内外学者的广泛研究和关注。本文首先讨论了聚合物的本征导热机理,系统深入地分析和评述了单体及分子链结构、结晶、取向、分子链间作用、交联、缺陷等结构因素,以及温度、压力、环境等因素对声子热传递及聚合物导热的影响机理,进一步归纳了本征导热聚合物的制备策略和途径。最后总结了当前本征导热聚合物研究面临的主要问题和挑战,展望了未来发展方向及其在众多领域的重要潜在应用。

Heat dissipation has emerged as a critical challenge and technical bottleneck which is increasingly restricting the continuous miniaturization of large-power and ultrahigh frequency microelectronic devices and high-voltage electrical insulation equipment. High-performance heat conductive materials are highly desirable for effective thermal management. Compared with conventional heat conductive polymeric composites, the intrinsically thermal conductive polymers have gained extensive research and attention from domestic and overseas owing to their integrated excellent overall properties like high thermal conductivity and high dielectric breakdown strength, excellent flexibility, lightweight and high strength, etc. The present paper first discusses the heat conduction mechanisms in intrinsic polymers, and then systematically analyzes and reviews the following factors influencing phonon transport and polymers’ thermal conductivity: the structures from monomers and molecular chains with diverse scales, crystallinity, orientation, inter-chain interactions, crosslinking, structure defects, as well as temperature, pressure, environmental factors, etc. Further, the strategies to prepare high thermal conductivity polymers have been summarized. Finally, this paper sums up the existing questions and challenges ahead in the study of thermal conductive polymers, and points out their future research direction and prospects potential important applications in various industrial occasions.

Contents

1 Introduction

2 Thermal conduction mechanisms in polymers

3 Polymers’ structure and thermal conductivity

3.1 Near-range structures

3.2 Long-range structures

3.3 Aggregation structure

4 Other factors affecting TC

4.1 Density and specific heat capacity

4.2 Electrical conductivity

4.3 Speed of sound

4.4 Temperature

4.5 Pressure

4.6 Environmental factors

5 Strategies for the preparation of ITCP

5.1 Top-down methods

5.2 Bottom-up methods

6 Conclusion and Prospects

()
图1 聚合物的热传导机制(a~f: 热能在晶格中逐步传递示意图)
Fig.1 Thermal conduction mechanism in polymers[10]. (Reprinted with permission from Ref.[10]; Copyright (2016) Progress in Polymer Science)
图2 聚电解质(PAR,PVPR)、四个笼状分子[19](DSQ、GHSQ、PC71BM、ADP)、COF、MOF如基于卟啉的反应性金属原(PorV-x)[20]及液晶LC等分子结构
Fig.2 Structures of polyelectrolytes (PAR, PVPR), four caged molecules[19]: DSQ, GHSQ, PC71BM, and ADP, COF and MOF like porphyrin-based reactive metallomesogen (PorV-x)[20], and LC molecules
图3 含不同类型支链结构的PE链的导热[22]
Fig.3 k of PE chains with different types of branching chains[22].(Reprinted with permission from Ref. [22]; Copyright (2019) Advanced Functional Materials)
图4 在380 ~ 410 K范围温度变化诱导链节旋转致使热导率急剧变化
Fig.4 Sharp thermal conductivity changes from 380 to 410 K due to the thermal excitation of segmental rotation[14]. (Reprinted with permission from Ref. [14]; Copyright (2018) Polymer)
图5 链扭结数量对聚合物链导热的影响[52]
Fig.5 Effect of number of kinks on k of a polymer chain[52]. (Reprinted with permission from Ref. [52]; Copyright (2019) Journal of Applied Physics)
图6 (a) 聚合物受到拉伸时内部结构变化的示意图[14]; ( b) k是聚三氟氯乙烯结晶度的函数[62]; (c)不同拉伸比下k随着平行于和垂直于拉伸方向的变化[35,58]; (d) 由分子动力学模拟的PE在不同拉伸比下的导热[15]
Fig.6 (a) Schematic of the internal structure changes when the polymer is subject to drawing[14]; (b) k as a function of crystallinity for polytrifluorochloroethylene[62]; (c) k along the direction parallel and perpendicular to the draw direction at different draw ratios[35,58]; (d) k of PE at different draw ratios from MDS[15]. (Reprinted with permission from Ref. [14] [62] [35] [58] [15]; Copyright (2018) Polymer)
图7 不同聚合物的导热随密度(a)和声速(b)的变化关系[14]
Fig.7 k of different polymers as a function of their densities (a) and sound of speed (b)[14]. (Reprinted with permission from Ref. [14]; Copyright (2018) Polymer)
图8 (a) 未极化和极化后P(VDF-TrFE)薄膜的导热; (b) P(VDF-TrFE)薄膜的电场-极化曲线和矫顽电场; (c) 半结晶PVDF的结构[101]
Fig.8 (a) k of unpoled and poled P(VDF-TrFE) films; (b) The P-E loop and coercive electric field of P(VDF-TrFE) film; (c) Structure of semi-crystalline PVDF[101]. (Reprinted with permission from Ref. [101]; Copyright (2021) Nano Energy)
图9 含氰基联苯致晶基元的液晶单体,通过阴离子开环聚合制备的侧链液晶聚合物[104]
Fig.9 Liquid crystal monomer with cyanobiphenyl mesogen and side-chain liquid crystal polymer prepared through anionic ring-opening polymerization[104]. (Reprinted with permission from Ref. [104]; Copyright (2022) Royal Society of Chemistry)
[1]
Zhou W Y, Dang Z M, Ding X W. Heat conductive polymer composites. Beijing: National Defense Industry Press, 2017. 72.
(周文英, 党智敏, 丁小卫. 聚合物基导热复合材料. 北京: 国防工业出版社, 2017. 72.).
[2]
Liu Y R, Xu Y F. Acta. Physica. Sinic., 2022, 71(2): 023601.

doi: 10.7498/aps     URL    
(刘裕芮, 许艳菲. 物理学报, 2022, 71(2): 023601.).
[3]
Pan D K, Zong Z C, Yang N. Acta. Physica. Sinic., 2022, 71(08): 284.
(潘东楷, 宗志成, 杨诺. 物理学报, 2022, 71(08): 284.).
[4]
Xu X F, Zhou J, Chen J. Adv. Funct. Mater., 2020, 30(8): 1904704.

doi: 10.1002/adfm.v30.8     URL    
[5]
Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog. Polym. Sci., 2016, 59: 41.

doi: 10.1016/j.progpolymsci.2016.03.001     URL    
[6]
Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W. Compos. Sci. Technol., 2020, 193: 108134.

doi: 10.1016/j.compscitech.2020.108134     URL    
[7]
Huang C L, Qian X, Yang R G. Mat. Sci. Eng. R., 2018, 132: 1.

doi: 10.1016/j.mser.2018.06.002     URL    
[8]
Lin Y, Huang X Y, Chen J, Jiang P K. High Volt., 2017, 2(3): 139.

doi: 10.1049/hve2.v2.3     URL    
[9]
Zhan H F, Nie Y H, Chen Y N, Bell J M, Gu Y T. Adv. Funct. Mater., 2020, 30(8): 1903841.

doi: 10.1002/adfm.v30.8     URL    
[10]
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Prog. Polym. Sci., 2016, 61: 1.

doi: 10.1016/j.progpolymsci.2016.05.001     URL    
[11]
Chaudhry A U, Mabrouk A N, Abdala A. Sci. Technol. Adv. Mater., 2020, 21(1): 737.

doi: 10.1080/14686996.2020.1820306     URL    
[12]
Henry A. Annu. Rev. Heat Transf., 2014, 17: 485.

doi: 10.1615/AnnualRevHeatTransfer.v17     URL    
[13]
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L. Acta Mater. Compos. Sin., 2021, 38(7)2038.
(周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林. 复合材料学报, 2021, 38(7)2038.).
[14]
Wei X F, Wang Z, Tian Z T, Luo T F. J. Heat Transf., 2021, 143(7): 072101.

doi: 10.1115/1.4050557     URL    
[15]
Liao Q W, Zeng L P, Liu Z C, Liu W. Sci. Rep., 2016, 6: 34999.

doi: 10.1038/srep34999    
[16]
Hong Y, Goh M. Polymers, 2021, 13(8): 1302.

doi: 10.3390/polym13081302     URL    
[17]
Ohki Y. IEEE Electr. Insul. Mag., 2010, 26(1): 48.
[18]
Ruan K P, Zhong X, Shi X T, Dang J J, Gu J W. Mater. Today Phys., 2021, 20: 100456
[19]
Xie X, Yang K X, Li D Y, Tsai T H, Shin J, Braun P V, Cahill D G. Phys. Rev. B, 2017, 95(3): 035406.

doi: 10.1103/PhysRevB.95.035406     URL    
[20]
Park M, Kang D G, Ko H, Rim M, Tran D T, Park S, Kang M J, Kim T W, Kim N, Jeong K U. Mater. Horiz., 2020, 7(10): 2635.

doi: 10.1039/D0MH00966K     URL    
[21]
Tan F L, Han S, Peng D L, Wang H L, Yang J, Zhao P, Ye X J, Dong X, Zheng Y Y, Zheng N, Gong L, Liang C L, Frese N, Gölzhäuser A, Qi H Y, Chen S S, Liu W, Zheng Z K. J. Am. Chem. Soc., 2021, 143(10): 3927.

doi: 10.1021/jacs.0c13458     URL    
[22]
Luo D C, Huang C L, Huang Z. J. Heat Transf., 2018, 140(3): 031302.

doi: 10.1115/1.4038003     URL    
[23]
Fan L H, Xi F Q, Wang X Y, Xuan J, Jiao K. J. Electrochem. Soc., 2019, 166(8): F511.

doi: 10.1149/2.0791908jes     URL    
[24]
Yu S, Park C, Hong S M, Koo C M. Thermochimica Acta, 2014, 583: 67.

doi: 10.1016/j.tca.2014.03.018     URL    
[25]
Li S H, Yu X X, Bao H, Yang N. J. Phys. Chem. C, 2018, 122(24): 13140.

doi: 10.1021/acs.jpcc.8b02001     URL    
[26]
Kisiel M, Mossety-Leszczak B. Eur. Polym. J., 2020, 124: 109507.

doi: 10.1016/j.eurpolymj.2020.109507     URL    
[27]
Ota S, Harada M. J. Appl. Polym. Sci., 2021, 138(19): 50367.

doi: 10.1002/app.v138.19     URL    
[28]
Islam A M, Lim H, You N H, Ahn S, Goh M, Hahn J R, Yeo H, Jang S G. ACS Macro Lett., 2018, 7(10): 1180.

doi: 10.1021/acsmacrolett.8b00456     URL    
[29]
Kim Y, Yeo H, You N H, Jang S G, Ahn S, Jeong K U, Lee S H, Goh M. Polym. Chem., 2017, 8(18): 2806.

doi: 10.1039/C7PY00243B     URL    
[30]
Tonpheng B, Yu J C, Andersson O. Phys. Chem. Chem. Phys., 2011, 13(33): 15047.

doi: 10.1039/c1cp20785g     URL    
[31]
Xu W X, Liang X A, Xu X H, Zhu Y. Acta. Physica. Sinic, 2020, 69(19): 261.
(徐文雪, 梁新刚, 徐向华, 祝渊. 物理学报, 2020, 69(19): 261.).
[32]
Lv G X, Jensen E, Evans C M, Cahill D G. ACS Appl. Polym. Mater., 2021, 3(9): 4430.

doi: 10.1021/acsapm.1c00737     URL    
[33]
Xiong X, Yang M, Liu C L, Li X B, Tang D W. J. Appl. Phys., 2017, 122(3): 035104.

doi: 10.1063/1.4994797     URL    
[34]
Rashidi V, Coyle E J, Sebeck K, Kieffer J, Pipe K P. J. Phys. Chem. B, 2017, 121(17): 4600.

doi: 10.1021/acs.jpcb.7b01377     URL    
[35]
Shen S, Henry A, Tong J, Zheng R T, Chen G. Nat. Nanotechnol., 2010, 5(4): 251.

doi: 10.1038/nnano.2010.27    
[36]
Wei X F, Huang Z H, Koch S, Zamengo M, Deng Y C, Minus M L, Morikawa J, Guo R L, Luo T F. ACS Appl. Polym. Mater., 2021, 3(6): 2979.

doi: 10.1021/acsapm.1c00128     URL    
[37]
Xu Y F, Wang X X, Zhou J W, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G. Sci. Adv., 2018, 4(3): eaar3031.

doi: 10.1126/sciadv.aar3031     URL    
[38]
Ma H, O'Donnel E, Tian Z T. Nanoscale, 2018, 10(29): 13924.

doi: 10.1039/C8NR02994F     URL    
[39]
Zhang T, Luo T F. J. Phys. Chem. B, 2016, 120(4): 803.

doi: 10.1021/acs.jpcb.5b09955     URL    
[40]
Singh V, Bougher T L, Weathers A, Cai Y, Bi K D, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A. Nat. Nanotechnol., 2014, 9(5): 384.

doi: 10.1038/nnano.2014.44    
[41]
Ma H, Tian Z T. J. Mater. Res., 2019, 34(1): 126.

doi: 10.1557/jmr.2018.362     URL    
[42]
Zhang T, Wu X F, Luo T F. J. Phys. Chem. C, 2014, 118(36): 21148.

doi: 10.1021/jp5051639     URL    
[43]
Liu J, Yang R G. Phys. Rev. B, 2012, 86(10): 104307.

doi: 10.1103/PhysRevB.86.104307     URL    
[44]
Kawagoe Y, Surblys D, Kikugawa G, Ohara T. AIP Adv., 2019, 9(2): 025302.

doi: 10.1063/1.5080432     URL    
[45]
Naghizadeh J, Ueberreiter K. Kolloid Zeitschrift Und Zeitschrift Für Polym., 1972, 250(10): 932.
[46]
Zhao J H, Jiang J W, Wei N, Zhang Y C, Rabczuk T. J. Appl. Phys., 2013, 113(18): 184304.

doi: 10.1063/1.4804237     URL    
[47]
Hansen D, Kantayya R C, Ho C C. Polym. Eng. Sci., 1966, 6(3): 260.

doi: 10.1002/(ISSN)1548-2634     URL    
[48]
Lv W, Henry A. Appl. Phys. Lett., 2016, 108(18): 181905.

doi: 10.1063/1.4948605     URL    
[49]
Henry A, Chen G. Phys. Rev. Lett., 2008, 101(23): 235502.

doi: 10.1103/PhysRevLett.101.235502     URL    
[50]
Kiessling A, Simavilla D N, Vogiatzis G G, Venerus D C. Polymer, 2021, 228: 123881.

doi: 10.1016/j.polymer.2021.123881     URL    
[51]
Duan X H, Li Z H, Liu J, Chen G, Li X B. J. Appl. Phys., 2019, 125(16): 164303.

doi: 10.1063/1.5086453     URL    
[52]
Subramanyan H, Zhang W Y, He J X, Kim K, Li X B, Liu J. J. Appl. Phys., 2019, 125(9): 095104.

doi: 10.1063/1.5086176     URL    
[53]
Qian X, Zhou J W, Chen G. Nat. Mater., 2021, 20(9): 1188.

doi: 10.1038/s41563-021-00918-3     pmid: 33686278
[54]
Li P F, Yang S, Zhang T, Shrestha R, Hippalgaonkar K, Luo T F, Zhang X, Shen S. Sci. Rep., 2016, 6: 21452.

doi: 10.1038/srep21452    
[55]
Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W. Natl Sci Rev, 2018, 5(4): 500.

doi: 10.1093/nsr/nwy004     URL    
[56]
Liu J, Ju S H, Ding Y F, Yang R G. Appl. Phys. Lett., 2014, 104(15): 153110.

doi: 10.1063/1.4871737     URL    
[57]
Allen P B, Feldman J L, Fabian J, Wooten F. Philos. Mag. Part B., 1999, 79(11): 1715.

doi: 10.1080/13642819908223054     URL    
[58]
Choy C L, Wong Y W, Yang G W, Kanamoto T. J. Polym. Sci. B Polym. Phys., 1999, 37(23): 3359.

doi: 10.1002/(ISSN)1099-0488     URL    
[59]
Lando J B, Olf H G, Peterlin A. J. Polym. Sci. A-1 Polym. Chem., 1966, 4(4): 941.
[60]
Kommandur S, Yee S K. J. Polym. Sci. B Polym. Phys., 2017, 55(15): 1160.

doi: 10.1002/polb.v55.15     URL    
[61]
Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A. Polymer, 2011, 52(8): 1711.

doi: 10.1016/j.polymer.2011.02.019     URL    
[62]
Zhang Y Z, Lei C X, Wu K, Fu Q. Adv. Sci., 2021, 8(14): 2004821.

doi: 10.1002/advs.v8.14     URL    
[63]
Guo Y T, Leung S N. AIP Adv., 2018, 8(4): 045126.

doi: 10.1063/1.5028375     URL    
[64]
Liu J, Yang R G. Phys. Rev. B, 2010, 81(17): 174122.

doi: 10.1103/PhysRevB.81.174122     URL    
[65]
He J X, Kim K, Wang Y C, Liu J. Appl. Phys. Lett., 2018, 112(5): 051907.

doi: 10.1063/1.5010986     URL    
[66]
Pan X L, Schenning A H P J, Shen L H, Bastiaansen C W M. Macromolecules, 2020, 53(13): 5599.

doi: 10.1021/acs.macromol.9b02647     URL    
[67]
Li Z, An L, Khuje S, Tan J Y, Hu Y, Huang Y L, Petit D, Faghihi D, Yu J, Ren S Q. Sci. Adv., 2021, 7(40): eabi7410.

doi: 10.1126/sciadv.abi7410     URL    
[68]
Shrestha R, Li P F, Chatterjee B, Zheng T, Wu X F, Liu Z Y, Luo T F, Choi S, Hippalgaonkar K, de Boer M P, Shen S. Nat. Commun., 2018, 9: 1664.

doi: 10.1038/s41467-018-03978-3     pmid: 29695754
[69]
Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R. Nat. Commun., 2019, 10: 1.

doi: 10.1038/s41467-018-07882-8     pmid: 30602773
[70]
Zhang R C, Huang Z H, Sun D, Ji D H, Zhong M L, Zang D M, Xu J Z, Wan Y Z, Lu A. Polymer, 2018, 154: 42.

doi: 10.1016/j.polymer.2018.08.078     URL    
[71]
Ohara T, Chia Yuan T, Torii D, Kikugawa G, Kosugi N. J. Chem. Phys., 2011, 135(3): 034507.

doi: 10.1063/1.3613648     URL    
[72]
Zhang L, Ruesch M, Zhang X L, Bai Z T, Liu L. RSC Adv., 2015, 5(107): 87981.

doi: 10.1039/C5RA18519J     URL    
[73]
Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J. Sci. Adv., 2017, 3(7): e1700342.

doi: 10.1126/sciadv.1700342     URL    
[74]
Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H. Polym. Chem., 2021, 12(7): 975.

doi: 10.1039/D0PY01549K     URL    
[75]
Mehra N, Li Y F, Zhu J H. J. Phys. Chem. C, 2018, 122(19): 10327.

doi: 10.1021/acs.jpcc.8b01991     URL    
[76]
Li Y, Pan P, Liu C, Zhou W Y, Li C G, Gong C D, Li H L, Zhang L, Song H. J. Polym. Eng., 2020, 40(7): 573.

doi: 10.1515/polyeng-2020-0004     URL    
[77]
Li C G, Li Y, Gong C D, Ruan K P, Zhong X, Pan P, Liu C, Gu J W, Shi X T. J. Appl. Polym. Sci., 2021, 138(6): 49791.

doi: 10.1002/app.v138.6     URL    
[78]
Xie X, Li D Y, Tsai T H, Liu J, Braun P V, Cahill D G. Macromolecules, 2016, 49(3): 972.

doi: 10.1021/acs.macromol.5b02477     URL    
[79]
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. Nat. Mater., 2015, 14(3): 295.

doi: 10.1038/nmat4141    
[80]
Mathur V, Sharma K. Heat Mass Transf., 2016, 52(12): 2901.

doi: 10.1007/s00231-016-1779-4     URL    
[81]
Hummel P, Lechner A M, Herrmann K, Biehl P, Rössel C, Wiedenhöft L, Schacher F H, Retsch M. Macromolecules, 2020, 53(13): 5528.

doi: 10.1021/acs.macromol.0c00596     URL    
[82]
Zheng H T, Xu G J, Wu K, Feng L, Zhang R G, Bao Y L, Wang H, Wang K X, Qu Z C, Shi J. J. Phys. Chem. C, 2021, 125(39): 21580.

doi: 10.1021/acs.jpcc.1c04919     URL    
[83]
Wei X F, Zhang T, Luo T F. Phys. Chem. Chem. Phys., 2016, 18(47): 32146.

doi: 10.1039/C6CP06643G     URL    
[84]
Eiermann K, Hellwege K X. J. Polym. Sci., 1962, 57(165): 99.

doi: 10.1002/pol.1962.1205716508     URL    
[85]
Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J, Li B W. Chin. Phys. Lett., 2020, 37(10): 104401.

doi: 10.1088/0256-307X/37/10/104401    
[86]
Zhou J, Xi Q, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J. Phys. Rev. Materials, 2020, 4: 015601.

doi: 10.1103/PhysRevMaterials.4.015601     URL    
[87]
Liu J, Xu Z L, Cheng Z, Xu S, Wang X W. ACS Appl. Mater. Interfaces, 2015, 7(49): 27279.

doi: 10.1021/acsami.5b08578     URL    
[88]
dos Santos W N, de Sousa J A, Gregorio R. Polym. Test., 2013, 32(5): 987.

doi: 10.1016/j.polymertesting.2013.05.007     URL    
[89]
Hsieh W P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G. Phys. Rev. B, 2011, 83(17): 174205.

doi: 10.1103/PhysRevB.83.174205     URL    
[90]
Yamanaka A, Izumi Y, Kitagawa T, Terada T, Sugihara H, Hirahata H, Ema K, Fujishiro H, Nishijima S. J. Appl. Polym. Sci., 2006, 101(4): 2619.

doi: 10.1002/(ISSN)1097-4628     URL    
[91]
Tomlinson J N, Kline D E, Sauer J A. Polym. Eng. Sci., 1965, 5(1): 44.

doi: 10.1002/(ISSN)1548-2634     URL    
[92]
Chien H C, Peng W T, Chiu T H, Wu P H, Liu Y J, Tu C W, Wang C L, Lu M C. ACS Nano, 2020, 14(3): 2939.

doi: 10.1021/acsnano.9b07493     URL    
[93]
Dinpajooh M, Nitzan A. J. Chem. Phys., 2020, 153(16): 164903.

doi: 10.1063/5.0023085     URL    
[94]
Kang D G, Park M, Kim D Y, Goh M, Kim N, Jeong K U. ACS Appl. Mater. Interfaces, 2016, 8(44): 30492.

doi: 10.1021/acsami.6b10256     URL    
[95]
Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M. Polymer, 2019, 180: 121760.

doi: 10.1016/j.polymer.2019.121760     URL    
[96]
Feng X H, Liu G Q, Xu S, Lin H, Wang X W. Polymer, 2013, 54(7): 1887.

doi: 10.1016/j.polymer.2013.01.038     URL    
[97]
Wang X J, Ho V, Segalman R A, Cahill D G. Macromolecules, 2013, 46(12): 4937.

doi: 10.1021/ma400612y     URL    
[98]
Ma J, Zhang Q, Mayo A, Ni Z H, Yi H, Chen Y F, Mu R, Bellan L M, Li D Y. Nanoscale, 2015, 7(40): 16899.

doi: 10.1039/C5NR04995D     URL    
[99]
Lu C H, Chiang S W, Du H D, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y. Polymer, 2017, 115: 52.

doi: 10.1016/j.polymer.2017.02.024     URL    
[100]
Yoon D, Lee H, Kim T, Song Y, Lee T, Lee J, Hun Seol J. Eur. Polym. J., 2023, 184: 111775.

doi: 10.1016/j.eurpolymj.2022.111775     URL    
[101]
Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N. Nano Energy, 2021, 82: 105749.

doi: 10.1016/j.nanoen.2021.105749     URL    
[102]
Mu L W, Ji T, Chen L, Mehra N, Shi Y J, Zhu J H. ACS Appl. Mater. Interfaces, 2016, 8(42): 29080.

doi: 10.1021/acsami.6b10451     URL    
[103]
Kato T, Nagahara T, Agari Y, Ochi M. J. Polym. Sci. B Polym. Phys., 2005, 43(24): 3591.

doi: 10.1002/(ISSN)1099-0488     URL    
[104]
Ku K, Choe S, Yeo H. Mol. Syst. Des. Eng., 2022, 7(5): 520.

doi: 10.1039/D1ME00182E     URL    
[105]
Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H. J. Polym. Sci. B Polym. Phys., 2003, 41(14): 1739.

doi: 10.1002/(ISSN)1099-0488     URL    
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[4] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[5] 倪秀秀, 丁鹤, 张景双, 曾周靓子, 白鹏, 郭翔海*. b轴取向MFI型分子筛膜二次生长合成策略及其应用[J]. 化学进展, 2018, 30(7): 976-988.
[6] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[7] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.
[8] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[9] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[10] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[11] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[12] 史静, 赵国良, 滕加伟, 王仰东, 唐颐, 谢在库. MFI型沸石形貌研究[J]. 化学进展, 2014, 26(04): 545-552.
[13] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
[14] 付钰洁, 唐守渊*. 微波波谱法研究水与有机/生物分子的分子配合物[J]. 化学进展, 2013, 25(06): 1042-1051.
[15] 黄翠英, 李阳, 王长生*. 准确快速计算含多肽酰胺和核酸碱基的氢键复合物的氢键强度和氢键作用势能曲线[J]. 化学进展, 2012, 24(06): 1214-1226.