English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1327-1340 DOI: 10.7536/PC221007 前一篇   后一篇

• 综述 •

多维度非锂无机杂化组分应用于锂电池复合聚合物电解质

马冰怡1, 黄盛2, 王拴紧2, 肖敏2, 韩东梅1,2,*(), 孟跃中1,2,*()   

  1. 1 中山大学 化学工程与技术学院 珠海 519082
    2 中山大学材料科学与工程学院 广东省低碳化学与过程节能重点实验室/光电材料与技术国家重点实验室 广州 510275
  • 收稿日期:2022-10-14 修回日期:2023-08-02 出版日期:2023-09-24 发布日期:2023-08-23

Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries

Bingyi Ma1, Sheng Huang2, Shuanjin Wang2, Min Xiao2, Dongmei Han1,2(), Yuezhong Meng1,2()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-sen University,Zhuhai 519082, China
    2 The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University,Guangzhou 510275, China
  • Received:2022-10-14 Revised:2023-08-02 Online:2023-09-24 Published:2023-08-23
  • Contact: *e-mail: handongm@mail.sysu.edu.cn(Dongmei Han); mengyzh@mail.sysu.edu.cn(Yuezhong Meng)
  • About author:

    Professor Dongmei Han received her PhD degree from Sun Yat-sen University in 2008, under the supervision of Professor Yuezhong Meng. She has ever worked one year as a Visiting fellow at University of wollongong, Australia 2008, and two years of a postdoctoral fellow with Professor Peikang Shen in Sun Yat-sen University from 2009 to 2012. Now she is an Associate Professor at Sun Yat-Sen University. Her research interests are focused on new energy materials. In this field, she has authored about 75 publications.

    Yuezhong Meng is the Pearl-River Professor at Sun Yat-sen University and the director of the Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province. He received B.Sc., M.Sc. and PhD degrees from Dalian University of Technology. He worked at City University of Hong Kong, McGill University, Canada, Nanyang Tech-nological University, Singapore and the National University of Singapore for more than 8 years. He became a "Hundred Talents" member of CAS in 1998. He has published 438 papers in refereed international journals and has 106 U.S. and Chinese patents. His research areas include exploratory functional polymers, chemical utilization of carbon dioxide and new energy materials.

传统的电解液易燃、易泄漏,具有一定的毒性,影响电池长时间工作的安全性能。为解决上述问题,近年来研究者们聚焦在(准)固态电解质的开发上。其中,无机填料-聚合物构建的固态复合物电解质兼具无机电解质的高离子电导率、力学稳定性和聚合物电解质的柔韧性、低界面阻抗的优点,引起了研究者们的广泛关注。无机填料主要包括活性含锂填料和惰性不含锂填料。作为惰性不含锂填料,非锂无机杂化组分具有成本低、制备工艺较简单的特点,在大规模工业化应用上具有更大的潜力。本文综述了复合聚合物电解质的性能要求,并从非锂无机杂化组分入手,总结了零维纳米颗粒、一维纳米管(纳米线、纳米棒)、二维氮化硼纳米片以及三维结构的惰性不含锂填料在提高复合聚合物电解质性能上的研究进展。基于对不同维度惰性填料的分析和思考,为惰性填料-聚合物电解质的设计应用提供指导方向,并展望了惰性不含锂填料在复合电解质工业应用上的广阔前景。

The traditional electrolyte is flammable, easy to leak, and toxic, which affects the safety performance of batteries working for a long time. In view of the above problems, recently researchers have focused on the development of (quasi) solid electrolyte. Solid composite electrolyte composed of inorganic fillers and polymer has the advantages of high ionic conductivity and mechanical stability of inorganic electrolyte, flexibility and low interface impedance of polymer electrolyte, which has attracted extensive attention of researchers. Inorganic components mainly include active Li+-containing fillers and inert Li+-free fillers. The inert Li+-free fillers possess the benefits of low cost and easy preparation process, so they have greater potential for large-scale industrial applications. In this paper, the performance requirements of composite polymer electrolytes are reviewed. Starting from non-lithium inorganic hybrid components, we summarize the research on improving the performance of composite polymer electrolyte with inert Li+-free fillers, including zero-dimensional nanoparticles, one-dimensional nanotubes (nanowires, nanorods), two-dimensional boron nitride nanosheets, and three-dimensional structure of fillers. Different dimensions of analysis and thinking aim to shed light on the design and application of inert fillers-polymer electrolytes, and we also look forward to the broad prospects of non-lithium inorganic components in the industrial application of composite electrolyte.

Contents

1 Introduction

2 Performance requirements

2.1 High ionic conductivity

2.2 High lithium-ion transference number

2.3 Wide electrochemical stability window

2.4 Mechanical strength

2.5 Thermal and chemical stability

3 Multi-dimensional non-lithium inorganic hybrid component

3.1 Zero-dimensional nanoparticles

3.2 One-dimensional nanostructure

3.3 Two-dimensional nanosheet

3.4 Three-dimensional strucutre

4 Conclusion and outlook

()
图1 2011—2021年锂电池领域固态复合电解质的热度趋势
Fig.1 The research trend of solid composite electrolytes of lithium batteries from 2011 to 2021
图2 复合聚合物电解质的性能要求示意图
Fig.2 Schematic diagram of performance requirements for composite polymer electrolytes
图3 零维纳米颗粒通过增强聚合物链段运动提高锂离子传导能力示意图
Fig.3 Schematic diagram of 0 D nanoparticles improving lithium ion conductivity by enhancing polymer chain segment movement
表1 基于纳米颗粒的复合聚合物电解质的主要电化学性质
Table 1 Main electrochemical properties of composite polymer electrolytes with nanoparticles
0 D nanoparticles Electrolyte Ionic
conductivity(S/cm)
Lithium-ion transference number Electrochemical stability window (vs
Li+/Li)(V)
Performance of battery ref
0.5 wt% TiO2 CPE-8 1.97×10-4(25 ℃) 5. LiFePO4/Li battery: The initial discharge capacity is 149 mAh/g, and the capacity retention rate after 140 cycles is 90% (0.2 C) 81
8 wt% TDI-SiO2 PEO-TDI-SiO2 1.2×10-4(25 ℃) 0.33 5.6 Graphene foam-LiFePO4/Li battery: The initial discharge capacity is 149.8 mAh/g, and the capacity retention rates after 100 cycles and 200 cycles are 93.8% and 83.7%, respectively (0.2 C) 58
4 wt% Al2O3 GPE 3.37×10-3 (24 ℃) 0.74 4.5 LiFePO4/Li battery: The highest capacity can reach 140 mAh/g. After 200 cycles, the capacity remains at 115 mAh/g, and the retention rate is 82.1% (100 mA/g) 82
9 wt% SiO2 PAN-in situ 3.5×10-4(20 ℃) 0.52 5.2 Li/ /NCM622 battery: The initial capacity is 173.1 mAh/g, the discharge capacity remains at 162.3 mAh/g after 200 cycles, and the capacity retention rate is 93.7% (0.1 C) 83
10 wt% KH570-modified SiO2 KSCE-PEO 3.37×10-4(25 ℃) 4.9 LiFePO4/Li battery: The initial capacity is 138.31 mAh/g, and the discharge capacity after 100 cycles is 144.4 mAh/g (0.2 C) 57
7.5 wt% TiO2 PVdF-co-HFP-LiTFSI-EC-TiO2-NCF 2.69×10-3 (30 ℃) 0.53 5.4 LiFePO4/Li battery: The initial capacity is 145 mAh/g, and the capacity retention rate after 50 cycles is 94% (0.1 C) 84
TiO2 PVDF-HFP/TBOB 7.4×10-3(25 ℃) 5.5 LiFePO4/Li battery: It can stably charge and discharge for 600 cycles at 0.1 C, with little capacity attenuation 85
10 wt% γ-Al2O3 FSI-based NSPE 5.4×10-4(70 ℃) 0.15 LiFePO4/Li battery: The initial capacity is 160 mAh/g, and the capacity after 50 cycles is 156 mAh/g (0.1 C) 86
ZnO VPI-ZnO/PEO/LiTFSI 1.5×10-5(25 ℃) 0.31 4.5 NMC811/Li battery: The initial capacity is 164.7 mAh/g. It remains 132.8 mAh/g after 200 cycles, and the capacity retention rate is 82.0% (0.5 C) 28
4 wt% ZrO2 P(CL80TMC20)-LiTFSI0.28-ZrO2 1.7×10-5(30 ℃) 0.83~0.87 LiFePO4/Li battery: The initial capacity is 150 mAh/g, and the capacity retention rate is 82% after 55 cycles (0.1 C) 59
TiO2 PEG-TEP-TiO2 1.9×10-5(70 ℃) 5.32 LiFePO4/Li battery: The initial capacity is 125.7 mAh/g, the capacity after 200 cycles is 102.0 mAh/g, and the capacity retention rate is 82% (0.2 C) 30
γ-Al2O3 QSE 1.1×10-3(25 ℃) 0.62 5.0 LiFePO4/Li battery: The initial capacity is 141.8 mAh/g. After 50 cycles, the capacity is 136.8 mAh/g and the capacity retention rate is 96.5% (0.1 C) 87
SiO2 SiES 1.74×10-3(25 ℃) 0.44 4.91 LiFePO4/Li battery: After 200 cycles, the capacity is still 159.3 mAh/g (0.2 C) 88
图4 核壳结构SiO2 颗粒的(a)TEM图像和在直径方向上的(b)能量色散X射线光谱(EDXS)分布[61]
Fig.4 (a) TEM image and (b) EDXS profile of core-shell structured SiO2 particle in the direction of diameter[61]. Copyright 2012, Elsevier
图5 一维纳米棒构建的离子传导途径示意图
Fig.5 Schematic diagram of ion conduction pathway constructed by 1 D nanorods
图6 (a)TDI接枝TiO2制备示意图和(b)电解质制备及应用示意图[69]
Fig.6 (a) The preparation scheme of TDI grafted TiO2 and (b) schematic diagram of electrolyte preparation and application[69]. Copyright 2021, Elsevier
表2 基于惰性一维纳米填料的复合聚合物电解质的主要电化学性质
Table 2 Main electrochemical properties of composite polymer electrolytes with inert one-dimensional nanofiller
1 D nanostructure Electrolyte Ionic
conductivity(S/cm)
Lithium-ion transference number Electrochemical stability window
(vs Li+/Li)(V)
Performance of battery ref
Ca-CeO2 nanotube Ca-CeO2/LiTFSI/PEO 1.3×10-4(60 ℃) 0.453 4.5 LiFePO4/Li battery: The initial capacity is 125.7 mAh/g, the capacity after 200 cycles is 102.0 mAh/g, and the capacity retention rate is 82% (0.2 C) 68
10 wt% Sm-
CeO2 nanowire
PVDF-based CPE 9.09×10-5(30 ℃) 0.40 4.89 LiFePO4/Li battery: The initial capacity is 155.1 mAh/g, and the discharge capacity after 130 cycles is 155.3 mAh/g (1 C) 89
8 wt% TDI-
TiO2 nanowire
PEO-TDI-TiO2 1.04×10-3(60 ℃) 0.36 5.5 NCM811/Li battery: The initial discharge capacity is 161.1 mAh/g, and the discharge capacity after 40 cycles is 150.3 mAh/g (0.1 C) 75
10 wt%
CeO2 nanowire
CSPE-10NW 1.1×10-3(60 ℃) 0.47 5.1 LiFePO4/Li battery: The capacity retention rate is 98% and 91% after 100 cycles and 280 cycles, respectively (0.1 C) 67
Gd-CeO2 nanowire es-PVDF-PEO-GDC 2.3×10-4(30 ℃) 0.64 4.5 LiFePO4/Li battery: After 600 cycles, the capacity is still 119.4 mAh/g, and the coulombic efficiency is ~99.8% (1 C) 64
CNF CNF/PEO 3.1×10-5(25 ℃) Li/Li symmetrical battery: stable cycling for more than 280 hours at 0.2 mA/cm2 90
10 wt%
Mg2B2O5 nanowire
PEO-LiTFSI-
10 wt%
Mg2B2O5
3.7×10-4(50 ℃) 0.44 4.75 LiFePO4/Li battery: The capacity retention after 230 cycles is ~120 mAh/g, and coulombic efficiency is ~100% (1 C) 91
3 wt% VSB-
5 nanorod
PEO-LiTFSI-3%VSB-5 4.83×10-5(30 ℃) 0.13 4.13 LiFePO4/Li battery: The capacity remains 157.4 mAh/g after 50 cycles, with excellent cycle performance and rate performance 92
5 wt%
HNT
HNT-PCL 6.62×10-5(30 ℃) 0.65 5.4 LiMn0.5Fe0.5PO4/Li battery: The initial discharge capacity is 134 mAh/g, the capacity after 250 cycles is 117 mAh/g, and the capacity retention rate is 87% (0.2 C) 93
HNT TPU-HNTs-LiFSI-PE 1.87×10-5(60 ℃) 0.24 5.1 NCM/Li battery: The initial capacity is 114 mAh/g, and the capacity retention rate is 89.99% after 300 cycles (0.5 C) 94
10 wt%
SiO2 nanotube
(SNts)
PEO/LiTFSI/SNts 4.35×10-4(30 ℃) 0.65 LiFePO4/Li battery: The initial capacity is 151 mAh/g, the capacity remains 126 mAh/g after 100 cycles, and the capacity retention rate is ~83.4% (0.1 C) 95
1.0 wt% NWCNTs UPHC 1.1×10-3(25 ℃) 0.64 5.08 LSB: The initial capacity is 704.5 mAh/g, the discharge capacity after 300 cycles is 608.8 mAh/g, and the capacity retention rate is 86.4% (0.5 C) 96
图7 LiClO4-PAN电解质中锂离子传导机制示意图[70]
Fig.7 The schematic illustration of Li+ conduction mechanism in LiClO4-PAN electrolyte[70]. Copyright 2018, Elsevier
图8 (a)G-CFBN的制备示意图,(b)CFBN (0.5 wt% FBN)的照片,(c) CFBN (0.5 wt% FBN) 的SEM图像,表面(左)和横截面(右), 25 ℃下Li/电解质/ LiFePO4电池的电化学性能,其中电解质为G-CFBN和LE-Celgard(d)在0.1 C下的长循环性能和(e)含G-CFBN电解质的电池在10 C下的长循环性能[74]
Fig.8 (a) Schematic illustration of the overall procedure for the preparation of G-CFBNs, (b) photograph of CFBN (0.5 wt% FBN), (c) surface (left) and cross-sectional (right) SEM images of CFBN (0.5 wt% FBN), Electrochemical performance of Li/electrolyte/LiFePO4 cells cycled at 25 ℃, where the electrolyte is G-CFBN and LE-Celgard, (d) long-term cycling performance of the cells at 1.0 C, and (e) long-term cycling performance of the cells containing G-CFBN at 10 C[74]. Copyright 2017, Elsevier
表3 基于二维氮化硼纳米片的复合聚合物电解质的主要电化学性质
Table 3 Main electrochemical properties of composite polymer electrolytes with 2D boron nitride nanosheets
图9 SiO2-PEO三维网络促进离子运输的示意图[77]
Fig.9 Schematic diagram of SiO2-PEO three-dimensional network promoting ion transport[77]. Copyright 2018, Elsevier
图10 三维玻璃纤维布和PEO构建的复合电解质示意图[78]
Fig.10 Schematic diagram of composite electrolyte constructed by 3D glass fiber cloth and PEO[78]. Copyright 2021, Elsevier
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644     URL    
[2]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat. Mater., 2005, 4(5): 366.

doi: 10.1038/nmat1368    
[3]
Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chem, 2019, 5(1): 74.

doi: 10.1016/j.chempr.2018.12.002     URL    
[4]
Li C F, Liu S H, Shi C G, Liang G H, Lu Z T, Fu R W, Wu D C. Nat. Commun., 2019, 10: 1363.

doi: 10.1038/s41467-019-09211-z    
[5]
Wang R H, Cui W S, Chu F L, Wu F X. J. Energy Chem., 2020, 48: 145.

doi: 10.1016/j.jechem.2019.12.024     URL    
[6]
Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, Zhi C Y. Chem. Soc. Rev., 2020, 49(1): 180.

doi: 10.1039/C9CS00131J     URL    
[7]
Lu Y Y, Tu Z Y, Archer L A. Nat. Mater., 2014, 13(10): 961.

doi: 10.1038/nmat4041    
[8]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438     pmid: 23294028
[9]
Xu R, Cheng X B, Yan C, Zhang X Q, Xiao Y, Zhao C Z, Huang J Q, Zhang Q. Matter, 2019, 1(2): 317.

doi: 10.1016/j.matt.2019.05.016     URL    
[10]
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93.

doi: 10.1016/j.nanoen.2018.10.035     URL    
[11]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.

doi: 10.1021/cm901452z     URL    
[12]
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. J. Power Sources, 2014, 257: 421.

doi: 10.1016/j.jpowsour.2013.11.103     URL    
[13]
Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. Nat. Commun., 2015, 6: 7436.

doi: 10.1038/ncomms8436    
[14]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3    
[15]
Tang W J, Tang S, Guan X Z, Zhang X Y, Xiang Q, Luo J Y. Adv. Funct. Mater., 2019, 29(16): 1900648.

doi: 10.1002/adfm.v29.16     URL    
[16]
Zhao C Z, Zhao B C, Yan C, Zhang X Q, Huang J Q, Mo Y F, Xu X X, Li H, Zhang Q. Energy Storage Mater., 2020, 24: 75.
[17]
Wang Q, Yuan B H, Lu Y F, Shen F, Zhao B, Han X G. Nanotechnology, 2021, 32(49): 495401.

doi: 10.1088/1361-6528/ac2093    
[18]
Zhao Q, Stalin S, Zhao C Z, Archer L A. Nat. Rev. Mater., 2020, 5(3): 229.

doi: 10.1038/s41578-019-0165-5    
[19]
Lim H D, Park J H, Shin H J, Jeong J, Kim J T, Nam K W, Jung H G, Chung K Y. Energy Storage Mater., 2020, 25: 224.
[20]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.

doi: 10.1002/adma.v32.17     URL    
[21]
Li L, Deng Y, Chen G. J. Energy Chem., 2020, 50: 154.

doi: 10.1016/j.jechem.2020.03.017     URL    
[22]
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Adv. Sci., 2020, 7(5): 1903088.

doi: 10.1002/advs.v7.5     URL    
[23]
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat. Energy, 2019, 4(5): 365.

doi: 10.1038/s41560-019-0349-7    
[24]
Zhao C Z, Zhao Q, Liu X, Zheng J X, Stalin S, Zhang Q, Archer L A. Adv. Mater., 2020, 32(12): 1905629.

doi: 10.1002/adma.v32.12     URL    
[25]
Wu N, Li Y T, Dolocan A, Li W, Xu H H, Xu B Y, Grundish N S, Cui Z M, Jin H B, Goodenough J B. Adv. Funct. Mater., 2020, 30(22): 2000831.

doi: 10.1002/adfm.v30.22     URL    
[26]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.

doi: 10.1002/aenm.v8.11     URL    
[27]
Zhang Z, Wang J, Zhang S, Ying H, Zhuang Z, Ma F, Huang P, Yang T, Han G, Han W Q. Energy Storage Mater., 2021, 43: 229.
[28]
Bao W D, Zhao L Q, Zhao H J, Su L X, Cai X C, Yi B L, Zhang Y, Xie J. Energy Storage Mater., 2021, 43: 258.
[29]
Hoang H A, Le Mong A, Kim D. J. Power Sources, 2021, 507: 230288.

doi: 10.1016/j.jpowsour.2021.230288     URL    
[30]
Guo J Q, Chen Y P, Xiao Y B, Xi C P, Xu G, Li B R, Yang C K, Yu Y. Chem. Eng. J., 2021, 422: 130526.

doi: 10.1016/j.cej.2021.130526     URL    
[31]
Dhatarwal P, Choudhary S, Sengwa R J. Compos. Commun., 2018, 10: 11.

doi: 10.1016/j.coco.2018.05.004     URL    
[32]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.

doi: 10.1002/adma.v31.12     URL    
[33]
Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.
[34]
Bag S, Zhou C T, Kim P J, Pol V G, Thangadurai V. Energy Storage Mater., 2020, 24: 198.
[35]
Yao M, Zhang H T, Xing C X, Li Q G, Tang Y J, Zhang F J, Yang K, Zhang S J. Energy Storage Mater., 2021, 41: 51.
[36]
Yao M, Yu T H, Ruan Q Q, Chen Q J, Zhang H T, Zhang S J. ACS Appl. Mater. Interfaces, 2021, 13(39): 47163.

doi: 10.1021/acsami.1c15038     URL    
[37]
Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Energy Storage Mater., 2020, 33: 26.
[38]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.

doi: 10.1021/acs.macromol.9b02742     URL    
[39]
Costa C M, Lee Y H, Kim J H, Lee S Y, Lanceros-MÉndez S. Energy Storage Mater., 2019, 22: 346.
[40]
Wang X E, Kerr R, Chen F F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C. Adv. Mater., 2020, 32(18): 1905219.

doi: 10.1002/adma.v32.18     URL    
[41]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.

doi: 10.1038/natrevmats.2016.103    
[42]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy, 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037     URL    
[43]
Hsu S T, Tran B T, Subramani R, Nguyen H T T, Rajamani A, Lee M Y, Hou S S, Lee Y L, Teng H. J. Power Sources, 2020, 449: 227518.

doi: 10.1016/j.jpowsour.2019.227518     URL    
[44]
Zhao Y, Zhang Y G, Gosselink D, Doan T N L, Sadhu M, Cheang H J, Chen P. Membranes, 2012, 2(3): 553.

doi: 10.3390/membranes2030553     pmid: 24958296
[45]
Zhang W Q, Nie J H, Li F, Wang zhong lin, Sun C W. Nano Energy, 2018, 45: 413.

doi: 10.1016/j.nanoen.2018.01.028     URL    
[46]
Zhang Z, Huang Y, Gao H, Hang J X, Li C, Liu P B. J. Membr. Sci., 2020, 598: 117800.

doi: 10.1016/j.memsci.2019.117800     URL    
[47]
Lopez J, Mackanic D G, Cui Y, Bao Z N. Nat. Rev. Mater., 2019, 4(5): 312.

doi: 10.1038/s41578-019-0103-6    
[48]
Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C X, Kaskel S, Zhang Q. ACS Energy Lett., 2020, 5(3): 833.

doi: 10.1021/acsenergylett.9b02660     URL    
[49]
Liu S L, Liu W Y, Ba D L, Zhao Y Z, Ye Y H, Li Y Y, Liu J P. Adv. Mater., 2023, 35(2): 2110423.

doi: 10.1002/adma.v35.2     URL    
[50]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w     URL    
[51]
Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q. Chem. Rev., 2020, 120(9): 4169.

doi: 10.1021/acs.chemrev.9b00760     URL    
[52]
Boaretto N, Meabe L, Martinez-Ibanez M, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167: 070524.

doi: 10.1149/1945-7111/ab7221    
[53]
Cao D X, Sun X, Li Q, Natan A, Xiang P Y, Zhu H L. Matter, 2020, 3(1): 57.

doi: 10.1016/j.matt.2020.03.015     URL    
[54]
Li J H, Cai Y F, Wu H M, Yu Z A, Yan X Z, Zhang Q H, Gao T Z, Liu K, Jia X D, Bao Z N. Adv. Energy Mater., 2021, 11(15): 2003239.

doi: 10.1002/aenm.v11.15     URL    
[55]
Zhang Q Q, Liu K, Ding F, Liu X J. Nano Res., 2017, 10(12): 4139.

doi: 10.1007/s12274-017-1763-4     URL    
[56]
Jia M Y, Khurram Tufail M, Guo X X. ChemSusChem, 2023, 16(2): e202201801.

doi: 10.1002/cssc.v16.2     URL    
[57]
Lv F, Liu K X, Wang Z Y, Zhu J F, Zhao Y, Yuan S. J. Colloid Interface Sci., 2021, 596: 257.

doi: 10.1016/j.jcis.2021.02.095     URL    
[58]
Li C, Huang Y, Feng X S, Zhang Z, Gao H, Huang J X. J. Colloid Interface Sci., 2021, 594: 1.

doi: 10.1016/j.jcis.2021.02.128     URL    
[59]
Lee T K, Andersson R, Dzulkurnain N A, Hernández G, Mindemark J, Brandell D. Batter. Supercaps, 2021, 4(4): 653.

doi: 10.1002/batt.v4.4     URL    
[60]
Song Y L, Yang L Y, Li J W, Zhang M Z, Wang Y H, Li S N, Chen S M, Yang K, Xu K, Pan F. Small, 2021, 17(42): 2102039.

doi: 10.1002/smll.v17.42     URL    
[61]
Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem. Commun., 2012, 17: 18.

doi: 10.1016/j.elecom.2012.01.008     URL    
[62]
Ju S H, Lee Y S, Sun Y K, Kim D W. J. Mater. Chem. A, 2013, 1(2): 395.

doi: 10.1039/C2TA00556E     URL    
[63]
Lee Y S, Lee J H, Choi J A, Yoon W Y, Kim D W. Adv. Funct. Mater., 2013, 23(8): 1019.

doi: 10.1002/adfm.v23.8     URL    
[64]
Gao L, Luo S B, Li J X, Cheng B W, Kang W M, Deng N P. Energy Storage Mater., 2021, 43: 266.
[65]
Khan S, Fang C Y, Ma Y C, Haq M U, Nisar M, Xu G, Liu Y, Han G R. J. Electrochem. Soc., 2021, 168(2): 022504.

doi: 10.1149/1945-7111/abe28b    
[66]
Liu W, Lin D C, Sun J, Zhou G M, Cui Y. ACS Nano, 2016, 10(12): 11407.

doi: 10.1021/acsnano.6b06797     URL    
[67]
Ao X, Wang X, Tan J, Zhang S, Su C, Dong L, Tang M, Wang Z, Tian B, Wang H. Nano Energy, 2021, 79: 105475.

doi: 10.1016/j.nanoen.2020.105475     URL    
[68]
Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H J, Cui G L, Zhang S Q. Adv. Energy Mater., 2020, 10(21): 2000049.

doi: 10.1002/aenm.v10.21     URL    
[69]
Li C, Huang Y, Chen C, Feng X S, Zhang Z. Appl. Surf. Sci., 2021, 563: 150248.

doi: 10.1016/j.apsusc.2021.150248     URL    
[70]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.

doi: 10.1016/j.ssi.2017.11.026     URL    
[71]
Pu J, Zhang K, Wang Z H, Li C W, Zhu K P, Yao Y G, Hong G. Adv. Funct. Mater., 2021, 31(48): 2106315.

doi: 10.1002/adfm.v31.48     URL    
[72]
Zheng Y P, Li H H, Yuan H Y, Fan H H, Li W L, Zhang J P. Appl. Surf. Sci., 2018, 434: 596.

doi: 10.1016/j.apsusc.2017.10.230     URL    
[73]
Li M T, Zhu W S, Zhang P F, Chao Y H, He Q, Yang B L, Li H M, Borisevich A, Dai S. Small, 2016, 12(26): 3535.

doi: 10.1002/smll.201600358     URL    
[74]
Shim J, Kim H J, Kim B G, Kim Y S, Kim D G, Lee J C. Energy Environ. Sci., 2017, 10(9): 1911.

doi: 10.1039/C7EE01095H     URL    
[75]
Zhang X L, Guo W Y, Zhou L Z, Xu Q J, Min Y L. J. Mater. Chem. A, 2021, 9(36): 20530.

doi: 10.1039/D1TA05410D     URL    
[76]
Du L L, Zhang B, Wang X F, Dong C H, Mai L Q, Xu L. Chem. Eng. J., 2023, 451: 138787.

doi: 10.1016/j.cej.2022.138787     URL    
[77]
Lin D C, Yuen P Y, Liu Y Y, Liu W, Liu N, Dauskardt R H, Cui Y. Adv. Mater., 2018, 30(32): 1802661.

doi: 10.1002/adma.v30.32     URL    
[78]
Zhang Z, Huang Y, Gao H, Li C, Huang J X, Liu P B. J. Membr. Sci., 2021, 621: 118940.

doi: 10.1016/j.memsci.2020.118940     URL    
[79]
Wang J, Yang J, Shen L, Guo Q Y, He H, Yao X Y. ACS Appl. Energy Mater., 2021, 4(4): 4129.

doi: 10.1021/acsaem.1c00468     URL    
[80]
Hu J L, Chen K Y, Yao Z G, Li C L. Sci. Bull., 2021, 66(7): 694.

doi: 10.1016/j.scib.2020.11.017     URL    
[81]
Tseng Y C, Ramdhani F I, Hsiang S H, Lee T Y, Teng H, Jan J S. J. Membr. Sci., 2022, 641: 119891.

doi: 10.1016/j.memsci.2021.119891     URL    
[82]
Wang S S, Zhou L, Tufail M K, Yang L, Zhai P F, Chen R J, Yang W. Chem. Eng. J., 2021, 415: 128846.

doi: 10.1016/j.cej.2021.128846     URL    
[83]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[84]
Sasikumar M, Krishna R H, Raja M, Therese H A, Balakrishnan N T M, Raghavan P, Sivakumar P. J. Alloys Compd., 2021, 882: 160709.

doi: 10.1016/j.jallcom.2021.160709     URL    
[85]
Chen N, Xing Y, Wang L L, Liu F, Li L, Chen R J, Wu F, Guo S J. Nano Energy, 2018, 47: 35.

doi: 10.1016/j.nanoen.2018.02.036     URL    
[86]
Judez X, Piszcz M, Coya E, Li C M, Aldalur I, Oteo U, Zhang Y, Zhang W, Rodriguez-Martinez L M, Zhang H, Armand M. Solid State Ion., 2018, 318: 95.

doi: 10.1016/j.ssi.2017.07.021     URL    
[87]
Tinghua X, Jian S, Shuhong Y, Dandan W, Yaping L, Qingqing P, Du P, Huiling Z, Ying B. Solid State Ionics, 2018, 326: 110.

doi: 10.1016/j.ssi.2018.09.020     URL    
[88]
Zhou D, Liu R L, He Y B, Li F Y, Liu M, Li B H, Yang Q H, Cai Q, Kang F Y. Adv. Energy Mater., 2016, 6(7): 1502214.

doi: 10.1002/aenm.v6.7     URL    
[89]
Peiqi L, Peng L, Haoqing L, Ziyang D, Zhenbao Z, Dengjie C. J. Membr. Sci., 2019, 580: 92.

doi: 10.1016/j.memsci.2019.03.006     URL    
[90]
Hengfei Q, Kun F, Ying Z, Yuhang Y, Mingyao S, Yudi K, Soo-Hwan J, Feng J, Lifeng C. Energy Storage Mater., 2020, 28: 293.
[91]
Sheng O W, Jin C B, Luo J M, Yuan H D, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Nano Lett., 2018, 18(5): 3104.

doi: 10.1021/acs.nanolett.8b00659     URL    
[92]
Wu Z J, Xie Z K, Yoshida A, Wang J, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. J. Colloid Interface Sci., 2020, 565: 110.

doi: 10.1016/j.jcis.2020.01.005     URL    
[93]
Xu H L, Ye W, Wang Q R, Han B, Wang J, Wang C Y, Deng Y H. J. Mater. Chem. A, 2021, 9(15): 9826.

doi: 10.1039/D1TA00745A     URL    
[94]
Shen Z C, Zhong J W, Xie W H, Chen J B, Ke X, Ma J M, Shi Z C. Acta Metall. Sin. Engl. Lett., 2021, 34(3): 359.
[95]
Hu J, Wang W H, Zhu X J, Liu S B, Wang Y J, Xu Y J, Zhou S K, He X C, Xue Z G. J. Membr. Sci., 2021, 618: 118697.

doi: 10.1016/j.memsci.2020.118697     URL    
[96]
Wang X L, Hao X J, Cai D, Zhang S E, Xia X H, Tu J P. Chem. Eng. J., 2020, 382: 122714.

doi: 10.1016/j.cej.2019.122714     URL    
[97]
An H W, Liu Q S, An J L, Liang S T, Wang X F, Xu Z W, Tong Y J, Huo H, Sun N, Wang Y L, Shi Y F, Wang J J. Energy Storage Mater., 2021, 43: 358.
[98]
Yin X S, Wang L, Kim Y, Ding N, Kong J H, Safanama D, Zheng Y, Xu J W, Repaka D V M, Hippalgaonkar K, Lee S W, Adams S, Zheng G W. Adv. Sci., 2020, 7(19): 2001303.

doi: 10.1002/advs.v7.19     URL    
[99]
Li Y H, Zhang L B, Sun Z J, Gao G X, Lu S Y, Zhu M, Zhang Y F, Jia Z Y, Xiao C H, Bu H T, Xi K, Ding S J. J. Mater. Chem. A, 2020, 8(19): 9579.

doi: 10.1039/D0TA03677C     URL    
[100]
Kim D, Liu X, Yu B Z, Mateti S, O'dell L A, Rong Q Z, Chen Y. Adv. Funct. Mater., 2020, 30(15): 1910813.

doi: 10.1002/adfm.v30.15     URL    
[101]
Zhang Z Y, Antonio R G, Leong Choy K. J. Power Sources, 2019, 435: 226736.

doi: 10.1016/j.jpowsour.2019.226736     URL    
[102]
Hyun W J, de Moraes A C M, Lim J M, Downing J R, Park K Y, Tan M T Z, Hersam M C. ACS Nano, 2019, 13(8): 9664.

doi: 10.1021/acsnano.9b04989     pmid: 31318524
[103]
Shen B, Zhang T W, Yin Y C, Zhu Z X, Lu L L, Ma C, Zhou F, Yao H B. Chem. Commun., 2019, 55(53): 7703.

doi: 10.1039/C9CC02124H     URL    
[1] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[2] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[3] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[5] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[6] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[7] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[8] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[9] 李骄阳, 王莉, 何向明. 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28(2/3): 193-203.
[10] 夏文, 李政, 徐银莉, 庄旭品, 贾士儒, 张健飞. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.
[11] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[12] 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, 27(4): 404-415.
[13] 娄帅锋, 程新群, 马玉林, 杜春雨, 高云智, 尹鸽平. 锂离子电池铌基氧化物负极材料[J]. 化学进展, 2015, 27(2/3): 297-309.
[14] 王海燕*, 唐有根, 周东慧, 刘素琴, 张辉. 锂离子电池用新型MV3O8(M=Li+ ,Na+ , NH4+) 嵌锂材料[J]. 化学进展, 2013, 25(06): 927-939.
[15] 褚道葆*, 李建, 袁希梅, 李自龙, 魏旭, 万勇. 锂离子电池Sn基合金负极材料[J]. 化学进展, 2012, 24(08): 1466-1476.