English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1065-1076 DOI: 10.7536/PC221121 前一篇   后一篇

• 综述 •

功能型聚合物基电磁屏蔽材料的制备及应用

张文博1,*(), 王佳宁1, 卫林峰2, 金花3, 鲍艳4, 马建中4   

  1. 1 陕西科技大学 陕西省轻化工助剂化学与技术协同创新中心 化学与化工学院 西安 710021
    2 西安稀有金属材料研究院有限公司 西安 710016
    3 温州职业技术学院 设计创意学院 温州 325000
    4 陕西科技大学 轻工科学与工程学院(柔性电子学院) 西安 710021
  • 收稿日期:2022-11-24 修回日期:2023-02-28 出版日期:2023-07-24 发布日期:2023-03-30
  • 基金资助:
    国家自然科学基金(21908141); 国家自然科学基金(52073164); 陕西省重点研发计划(2019GY-171); ,浙江省基础公益研究计划项目(LGG21E030003)

Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials

Wenbo Zhang1(), Jianing Wang1, Linfeng Wei2, Hua Jin3, Yan Bao4, Jianzhong Ma4   

  1. 1 College of Chemistry and Chemical Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology,Xi'an 710021, China
    2 Xi'an Rare Metal Materials Institute Co. Ltd,Xi'an 710016, China
    3 School of Design and Creativity, Wenzhou Polytechnic University,Wenzhou 325000, China
    4 College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science and Technology,Xi'an 710021, China
  • Received:2022-11-24 Revised:2023-02-28 Online:2023-07-24 Published:2023-03-30
  • Contact: * e-mail: zhangwenbo@sust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21908141); National Natural Science Foundation of China(52073164); Key Research and Development Program of Shaanxi Province(2019GY-171); Zhejiang Provincial Basic Public Welfare Research Plan Project(LGG21E030003)

随着大功率电子设备和电子通信技术的快速发展,如新兴的5G移动网络通信技术,开发高性能电磁干扰屏蔽材料已成为迫切的需求。聚合物基电磁屏蔽材料(PEMSM)由于其重量轻、可加工性强和电导率可调节等方面的优势而得到了长足的发展。日益复杂的应用环境和使用条件对PEMSM的功能性提出了更高的要求。本文首先讨论了电磁屏蔽的关键概念和损耗机制(反射、吸收和多次反射);其次总结了目前PEMSM的结构,包括均质结构、隔离结构、多孔结构和层状结构等,其中均质结构加工流程简单,隔离结构可降低材料的导电逾渗阈值,多孔结构有助于电磁波的多次反射和吸收,层状结构可以使电磁波在材料内部多次反射;然后详细介绍了功能型PEMSM的研究进展,涉及的功能包括耐久性、超疏水、抗菌性和电热性等;最后对功能性PEMSM的发展趋势进行了展望。

With the rapid development of high-power electronic equipment and electronic communication technology such as the emerging 5G mobile network communication technology, the development of high-performance electromagnetic interference shielding materials has become a desideratum. Polymer-based electromagnetic shielding materials (PEMSM) have been widely applied due to their advantages of lightweight, machinability, and adjustable conductivity. The increasingly complex application environment and operating conditions put forward higher requirements for the functionality of PEMSM. This paper firstly discusses the key concepts and loss mechanism of electromagnetic shielding (reflection, absorption, and multiple reflections), and then summarizes the current structural design of electromagnetic shielding composites including homogeneous structure, segregation structure, porous structure, and layered structure. The process of homogeneous structure is simple, and segregation structure can reduce the conductivity percolation threshold of materials. The porous structure is helpful for electromagnetic waves reflection and absorption, and the layered structure can make electromagnetic wave reflect inside the material many times. The research progress of PEMSM with the functions such as durability, superhydrophobicity, antibacterial property, Joule heating property, etc. is introduced in detail. Finally, the development of PEMSM is prospected.

Contents

1 Introduction

2 Mechanism of EMI Shielding

3 Structural designs of polymer-based electromagnetic shielding materials

3.1 Homogeneous structure

3.2 Segregation structure

3.3 Porous structure

3.4 Layered structure

4 Functional polymer-based electromagnetic shielding materials

4.1 Durability

4.2 Superhydrophobicity

4.3 Antibacterial property

4.4 Joule heating property

4.5 Others

5 Conclusion and outlook

()
图1 基于传输线理论的电磁屏蔽机制示意图
Fig.1 Schematic diagram of EMI shielding mechanism based on transmission line theory
图2 共混法制备GnPs@Ni/PPSU复合材料的示意图[68]
Fig.2 Schematic diagrams of preparation of GnPs@Ni/PPSU composite by solution blending[68]
图3 (a) Ti3C2Tx MXene/RGO泡沫结构电磁屏蔽复合材料的制备过程[79]。(b) 双向冷冻方法制备Ti3C2Tx/CNT混合气凝胶[82]
Fig.3 (a) Preparation of Ti3C2Tx MXene/RGO foam structure electromagnetic shielding composite[79]. (b) Ti3C2Tx/CNT hybrid aerogel fabricated by bidirectional freezing method[82]
图4 (a) 交替多层CNF@MXene薄膜的制备过程[83]。(b)固化法制备rGO@Fe3O4/T-ZnO/Ag/WPU复合薄膜[85]。(c)MXene/AgNW薄膜制备示意图[86]
Fig.4 Preparation of (a) multilayer CNF@MXene films[83], (b) rGO@Fe3O4/T-ZnO/Ag/WPU composite films by curing method[85] and (c) transparent MXene/AgNW film[86]
图5 (a) 弯曲AgNF薄膜的扫描电镜图像[94]。(b) AgNWs和纤维素片之间的相互作用[95]
Fig.5 (a) SEM image of a bended AgNF film[94]. (b) Interaction between AgNWs and cellulose sheets[95].
图6 (a,b) d-AgNWs@CS-PDMS的水接触角和抗菌性[105]。(c,d)棉纤维、CDCFs和纳米Cu/CDCFs的抗菌性和水接触角[106]
Fig.6 Water contact angle and antibacterial activity of (a,b) d-AgNWs@CS-PDMS[105] and (c,d) cotton fibers, CDCFs and Cu/CDCFs[106]
图7 (a) PI复合薄膜的制备示意图[110]。(b)MXene/ANF@FeNi复合薄膜的电热性能[111]
Fig.7 (a) Schematic diagram of PI composite film preparation[110]. (b) Joule heating property of MXene/ANF@FeNi film[111]
图8 (a)AgNW薄膜的透射率。(b)550 nm处的透射率[115]
Fig.8 Schematic of the AgNW film (a) transmittance and(b) transmittance at 550 nm[115]
[19]
Tong Y, He M, Zhou Y M, Zhong X, Fan L D, Huang T Y, Liao Q, Wang Y J. Appl. Surf. Sci., 2018, 434: 283.

doi: 10.1016/j.apsusc.2017.10.140     URL    
[20]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Polym. Rev., 2019, 59(4): 687.

doi: 10.1080/15583724.2019.1625058     URL    
[21]
Wu L P, Wu F, Sun Q Y, Shi J Y, Xie A M, Zhu X F, Dong W. J. Mater. Chem. C, 2021, 9(9): 3316.

doi: 10.1039/D0TC05230B     URL    
[22]
Singh A K, Shishkin A, Koppel T, Gupta N. Compos. B Eng., 2018, 149: 188.

doi: 10.1016/j.compositesb.2018.05.027     URL    
[23]
Sankaran S, Deshmukh K, Ahamed M B, Khadheer Pasha S K. Compos. A Appl. Sci. Manuf., 2018, 114: 49.

doi: 10.1016/j.compositesa.2018.08.006     URL    
[24]
Pakdel E, Wang J F, Kashi S M, Sun L, Wang X G. Adv. Colloid Interface Sci., 2020, 277: 102116.

doi: 10.1016/j.cis.2020.102116     URL    
[25]
Nazir A, Yu H J, Wang L, Haroon M, Ullah R S, Fahad S, Naveed K U R, Elshaarani T, Khan A, Usman M. J. Mater. Sci., 2018, 53(12): 8699.

doi: 10.1007/s10853-018-2122-x    
[26]
Wang Y, Gu F Q, Ni L J, Liang K, Marcus K, Liu S L, Yang F, Chen J J, Feng Z S. Nanoscale, 2017, 9(46): 18318.

doi: 10.1039/c7nr05951e     pmid: 29143001
[27]
Zhang D Q, Xiong Y F, Cheng J Y, Chai J X, Liu T T, Ba X W, Ullah S, Zheng G P, Yan M, Cao M S. Sci. Bull., 2020, 65(2): 138.

doi: 10.1016/j.scib.2019.10.011     URL    
[28]
Zhang D Q, Chai J X, Cheng J Y, Jia Y X, Yang X Y, Wang H, Zhao Z L, Han C, Shan G C, Zhang W J, Zheng G P, Cao M S. Appl. Surf. Sci., 2018, 462: 872.

doi: 10.1016/j.apsusc.2018.08.152     URL    
[29]
Cheng J Y, Zhang H B, Xiong Y F, Gao L F, Wen B, Raza H, Wang H, Zheng G P, Zhang D Q, Zhang H. J. Materiomics, 2021, 7(6): 1233.

doi: 10.1016/j.jmat.2021.02.017     URL    
[30]
Al-Saleh M H, Saadeh W H, Sundararaj U. Carbon, 2013, 60: 146.

doi: 10.1016/j.carbon.2013.04.008     URL    
[31]
Kwon S, Ma R J, Kim U, Choi H R, Baik S. Carbon, 2014, 68: 118.

doi: 10.1016/j.carbon.2013.10.070     URL    
[32]
Gupta T K, Singh B P, Mathur R B, Dhakate S R. Nanoscale, 2014, 6(2): 842.

doi: 10.1039/C3NR04565J     URL    
[33]
Hong Y K, Lee C Y, Jeong C K, Lee D E, Kim K, Joo J. Rev. Sci. Instrum., 2003, 74(2): 1098.

doi: 10.1063/1.1532540     URL    
[34]
Singh A P, Garg P, Alam F, Singh K, Mathur R B, Tandon R P, Chandra A, Dhawan S K. Carbon, 2012, 50(10): 3868.

doi: 10.1016/j.carbon.2012.04.030     URL    
[35]
Lu S W, Shao J Y, Ma K M, Chen D, Wang X Q, Zhang L, Meng Q S, Ma J. Carbon, 2018, 136: 387.

doi: 10.1016/j.carbon.2018.04.086     URL    
[36]
Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S, Eklund P C. Nano Lett., 2006, 6(6): 1141.

doi: 10.1021/nl0602589     URL    
[37]
Wang L, Ma Z L, Zhang Y L, Chen L X, Cao D P, Gu J W. SusMat, 2021, 1(3): 413.

doi: 10.1002/sus2.v1.3     URL    
[38]
Jiao Y Z, Cheng S Y, Wu F, Pan X H, Xie A M, Zhu X F, Dong W. Compos. B Eng., 2021, 211: 108643.

doi: 10.1016/j.compositesb.2021.108643     URL    
[39]
Clark D E, Folz D C, West J K. Mater. Sci. Eng. A, 2000, 287(2): 153.

doi: 10.1016/S0921-5093(00)00768-1     URL    
[40]
Liu S, Qin S H, Jiang Y, Song P G, Wang H. Compos. A Appl. Sci. Manuf., 2021, 145: 106376.

doi: 10.1016/j.compositesa.2021.106376     URL    
[41]
Gupta A, Choudhary V. Compos. Sci. Technol., 2011, 71(13): 1563.

doi: 10.1016/j.compscitech.2011.06.014     URL    
[42]
Yuan B Q, Yu L M, Sheng L M, An K, Zhao X L. J. Phys. D: Appl. Phys., 2012, 45(23): 235108.

doi: 10.1088/0022-3727/45/23/235108    
[43]
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Mater. Chem. Phys., 2009, 113(2/3): 919.

doi: 10.1016/j.matchemphys.2008.08.065     URL    
[44]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421     pmid: 27609888
[45]
Wei Q W, Pei S F, Qian X T, Liu H P, Liu Z B, Zhang W M, Zhou T Y, Zhang Z C, Zhang X F, Cheng H M, Ren W C. Adv. Mater., 2020, 32(14): 1907411.

doi: 10.1002/adma.v32.14     URL    
[46]
Hwang U, Kim J, Seol M, Lee B, Park I K, Suhr J, Nam J D. ACS Omega, 2022, 7(5): 4135.

doi: 10.1021/acsomega.1c05657     URL    
[47]
Zhang W B, Wei L F, Ma Z L, Fan Q Q, Ma J Z. Carbon, 2021, 177: 412.

doi: 10.1016/j.carbon.2021.02.093     URL    
[48]
Lee S, Jo I, Kang S M, Jang B, Moon J, Park J B, Lee S, Rho S, Kim Y, Hong B H. ACS Nano, 2017, 11(6): 5318.

doi: 10.1021/acsnano.7b00370     URL    
[49]
Xia Y J, Fang J, Li P C, Zhang B M, Yao H Y, Chen J S, Ding J, Ouyang J Y. ACS Appl. Mater. Interfaces, 2017, 9(22): 19001.

doi: 10.1021/acsami.7b02443     URL    
[50]
Jung J, Lee H, Ha I, Cho H, Kim K K, Kwon J, Won P, Hong S, Ko S H. ACS Appl. Mater. Interfaces, 2017, 9(51): 44609.

doi: 10.1021/acsami.7b14626     URL    
[51]
Arief I, Biswas S, Bose S. ACS Appl. Mater. Interfaces, 2017, 9(22): 19202.

doi: 10.1021/acsami.7b04053     URL    
[52]
Lee T W, Lee S E, Jeong Y G. Compos. Sci. Technol., 2016, 131: 77.

doi: 10.1016/j.compscitech.2016.06.003     URL    
[53]
Hsiao S T, Ma C C M, Liao W H, Wang Y S, Li S M, Huang Y C, Yang R B, Liang W F. ACS Appl. Mater. Interfaces, 2014, 6(13): 10667.

doi: 10.1021/am502412q     URL    
[54]
Zhang Y, Huang Y, Chen H H, Huang Z Y, Yang Y, Xiao P S, Zhou Y, Chen Y S. Carbon, 2016, 105: 438.

doi: 10.1016/j.carbon.2016.04.070     URL    
[55]
Wu Y, Wang Z Y, Liu X, Shen X, Zheng Q B, Xue Q, Kim J K. ACS Appl. Mater. Interfaces, 2017, 9(10): 9059.

doi: 10.1021/acsami.7b01017     URL    
[56]
Sun R H, Zhang H B, Liu J, Xie X, Yang R, Li Y, Hong S, Yu Z Z. Adv. Funct. Mater., 2017, 27(45): 1702807.

doi: 10.1002/adfm.v27.45     URL    
[57]
Huang Z Y, Chen H H, Huang Y, Ge Z, Zhou Y, Yang Y, Xiao P S, Liang J J, Zhang T F, Shi Q, Li G H, Chen Y S. Adv. Funct. Mater., 2018, 28(2): 1704363.

doi: 10.1002/adfm.v28.2     URL    
[58]
Song Q, Ye F, Yin X W, Li W, Li H J, Liu Y S, Li K Z, Xie K Y, Li X H, Fu Q G, Cheng L F, Zhang L T, Wei B Q. Adv. Mater., 2017, 29(31): 1701583.

doi: 10.1002/adma.v29.31     URL    
[59]
Lin S C, Ma C C M, Hsiao S T, Wang Y S, Yang C Y, Liao W H, Li S M, Wang J A, Cheng T Y, Lin C W, Yang R B. Appl. Surf. Sci., 2016, 385: 436.

doi: 10.1016/j.apsusc.2016.05.063     URL    
[60]
Feng S Y, Zhan Z Y, Yi Y, Zhou Z H, Lu C H. Compos. A Appl. Sci. Manuf., 2022, 157: 106907.

doi: 10.1016/j.compositesa.2022.106907     URL    
[61]
Jia L C, Yan D X, Cui C H, Ji X, Li Z M. Macromol. Mater. Eng., 2016, 301(10): 1232.

doi: 10.1002/mame.v301.10     URL    
[62]
Kuang T R, Chang L Q, Chen F, Sheng Y, Fu D J, Peng X F. Carbon, 2016, 105: 305.

doi: 10.1016/j.carbon.2016.04.052     URL    
[63]
Lee S H, Kang D, Oh I K. Carbon, 2017, 111: 248.

doi: 10.1016/j.carbon.2016.10.003     URL    
[64]
Verma P, Saini P, Malik R S, Choudhary V. Carbon, 2015, 89: 308.

doi: 10.1016/j.carbon.2015.03.063     URL    
[65]
Velhal N, Patil N D, Kulkarni G, Shinde S K, Valekar N J, Barshilia H C, Puri V. J. Alloys Compd., 2019, 777: 627.

doi: 10.1016/j.jallcom.2018.11.041     URL    
[66]
Zhang C H, Lv Q T, Liu Y J, Wang C, Wang Q, Wei H, Liu L J, Li J Q, Dong H X. Polymer, 2021, 224: 123742.

doi: 10.1016/j.polymer.2021.123742     URL    
[67]
Wei L F, Ma J Z, Zhang W B, Bai S L, Ren Y J, Zhang L, Wu Y K, Qin J B. Carbon, 2021, 181: 212.

doi: 10.1016/j.carbon.2021.05.032     URL    
[68]
Chen Z, Yang T, Cheng L, Mu J X. Polymers, 2021, 13(20): 3493.

doi: 10.3390/polym13203493     URL    
[69]
Bhawal P, Ganguly S, Das T K, Mondal S, Choudhury S, Das N C. Compos. B Eng., 2018, 134: 46.

doi: 10.1016/j.compositesb.2017.09.046     URL    
[70]
Sharika T, Abraham J, Arif P M, George S C, Kalarikkal N, Thomas S. Compos. B Eng., 2019, 173: 106798.

doi: 10.1016/j.compositesb.2019.05.009     URL    
[71]
Pang H, Xu L, Yan D X, Li Z M. Prog. Polym. Sci., 2014, 39(11): 1908.

doi: 10.1016/j.progpolymsci.2014.07.007     URL    
[72]
Wang T, Yu W C, Sun W J, Jia L C, Gao J F, Tang J H, Su H J, Yan D X, Li Z M. Compos. Sci. Technol., 2020, 200: 108446.

doi: 10.1016/j.compscitech.2020.108446     URL    
[73]
Wang Y, Fan Z W, Zhang H, Guo J, Yan D X, Wang S F, Dai K, Li Z M. Mater. Des., 2021, 197: 109222.

doi: 10.1016/j.matdes.2020.109222     URL    
[74]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Macromol. Mater. Eng., 2011, 296(10): 894.

doi: 10.1002/mame.201100035     URL    
[75]
Zhang H M, Zhang G C, Gao Q, Tang M, Ma Z L, Qin J B, Wang M Y, Kim J K. Chem. Eng. J., 2020, 379: 122304.

doi: 10.1016/j.cej.2019.122304     URL    
[76]
Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(36): 30752.

doi: 10.1021/acsami.8b10745     URL    
[77]
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14(1): 23.

doi: 10.1038/nmat4089    
[78]
Gong S S, Ni H, Jiang L, Cheng Q F. Mater. Today, 2017, 20(4): 210.

doi: 10.1016/j.mattod.2016.11.002     URL    
[79]
Zhao S, Zhang H B, Luo J Q, Wang Q W, Xu B, Hong S, Yu Z Z. ACS Nano, 2018, 12(11): 11193.

doi: 10.1021/acsnano.8b05739     pmid: 30339357
[80]
Zeng Z H, Jin H, Chen M J, Li W W, Zhou L C, Zhang Z. Adv. Funct. Mater., 2016, 26(2): 303.

doi: 10.1002/adfm.v26.2     URL    
[81]
Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O. Sci. Adv., 2015, 1(11): e1500849.

doi: 10.1126/sciadv.1500849     URL    
[82]
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M K, Gogotsi Y, Koo C M. ACS Appl. Mater. Interfaces, 2019, 11(41): 38046.

doi: 10.1021/acsami.9b12550     URL    
[83]
Zhou B, Zhang Z, Li Y L, Han G J, Feng Y Z, Wang B, Zhang D B, Ma J M, Liu C T. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895.

doi: 10.1021/acsami.9b19768     URL    
[84]
Wang Z, Cheng Z, Xie L, Hou X L, Fang C Q. Ceram. Int., 2021, 47(4): 5747.

doi: 10.1016/j.ceramint.2020.10.161     URL    
[85]
Xu Y D, Yang Y Q, Yan D X, Duan H J, Zhao G Z, Liu Y Q. ACS Appl. Mater. Interfaces, 2018, 10(22): 19143.

doi: 10.1021/acsami.8b05129     URL    
[86]
Chen W, Liu L X, Zhang H B, Yu Z Z. ACS Nano, 2020, 14(12): 16643.

doi: 10.1021/acsnano.0c01635     URL    
[87]
Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B. Small Methods, 2022, 6(4): 2101510.

doi: 10.1002/smtd.v6.4     URL    
[88]
Zhan Y H, Hao X H, Wang L C, Jiang X C, Cheng Y, Wang C Z, Meng Y Y, Xia H S, Chen Z M. ACS Appl. Mater. Interfaces, 2021, 13(12): 14623.

doi: 10.1021/acsami.1c03692     URL    
[89]
Zuo S D, Liang Y Y, Yang H Z, Ma X X, Ge S B, Wu Y J, Fei B H, Guo M, Ahamad T, Le H S, Van Le Q, Xia C L. Prog. Org. Coat., 2022, 165: 106736.
[90]
Zeng Z H, Wu N, Wei J J, Yang Y F, Wu T T, Li B, Hauser S B, Yang W D, Liu J R, Zhao S Y. Nano Micro Lett., 2022, 14(1): 1.
[91]
Zhang P, Tian R J, Zhang X, Ding X, Wang Y Y, Xiao C, Zheng K, Liu X L, Chen L, Tian X Y. Compos. B Eng., 2022, 232: 109611.

doi: 10.1016/j.compositesb.2022.109611     URL    
[92]
Jiang Y Q, Ru X L, Che W B, Jiang Z H, Chen H L, Hou J F, Yu Y M. Compos. B Eng., 2022, 229: 109460.

doi: 10.1016/j.compositesb.2021.109460     URL    
[93]
Li X L, Sheng M J, Gong S, Wu H, Chen X L, Lu X, Qu J P. Chem. Eng. J., 2022, 430: 132928.

doi: 10.1016/j.cej.2021.132928     URL    
[94]
Lin S, Wang H, Wu F, Wang Q, Bai X, Zu D, Song J, Wang D, Liu Z, Li Z. npj Flex. Electron, 2019, 3(1): 1.

doi: 10.1038/s41528-018-0045-x    
[95]
Liang C B, Ruan K P, Zhang Y L, Gu J W. ACS Appl. Mater. Interfaces, 2020, 12(15): 18023.

doi: 10.1021/acsami.0c04482     URL    
[96]
Wu X Y, Han B Y, Zhang H B, Xie X, Tu T X, Zhang Y, Dai Y, Yang R, Yu Z Z. Chem. Eng. J., 2020, 381: 122622.

doi: 10.1016/j.cej.2019.122622     URL    
[97]
Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Adv. Funct. Mater., 2006, 16(4): 568.

doi: 10.1002/(ISSN)1616-3028     URL    
[98]
Li Q M, Liu H, Zhang S D, Zhang D B, Liu X H, He Y X, Mi L W, Zhang J X, Liu C T, Shen C Y, Guo Z H. ACS Appl. Mater. Interfaces, 2019, 11(24): 21904.

doi: 10.1021/acsami.9b03421     URL    
[99]
Wang L, Chen Y, Lin L W, Wang H, Huang X W, Xue H G, Gao J F. Chem. Eng. J., 2019, 362: 89.

doi: 10.1016/j.cej.2019.01.014     URL    
[100]
Yang H, Bai S C, Chen T R, Zhang Y, Wang H F, Guo X Z. Mater. Res. Express, 2019, 6(8): 086315.

doi: 10.1088/2053-1591/ab20d5     URL    
[101]
Tao Y, Pan D C. Mater. Res. Express, 2019, 6(7): 076430.

doi: 10.1088/2053-1591/ab17a4     URL    
[102]
Li T T, Wang Y T, Peng H K, Zhang X F, Shiu B C, Lin J H, Lou C W. Compos. A Appl. Sci. Manuf., 2020, 128: 105685.

doi: 10.1016/j.compositesa.2019.105685     URL    
[103]
Zhou B, Li Z Y, Li Y L, Liu X H, Ma J M, Feng Y Z, Zhang D B, He C G, Liu C T, Shen C Y. Compos. Sci. Technol., 2021, 201: 108531.

doi: 10.1016/j.compscitech.2020.108531     URL    
[104]
Mu S P, Xie H Y, Wang W, Yu D. Appl. Surf. Sci., 2015, 353: 608.

doi: 10.1016/j.apsusc.2015.06.126     URL    
[105]
Zhu M, Yan X X, Lei Y T, Guo J H, Xu Y J, Xu H L, Dai L, Kong L. ACS Appl. Mater. Interfaces, 2022, 14(12): 14520.

doi: 10.1021/acsami.1c23515     URL    
[106]
Jiao Y, Wan C C, Zhang W B, Bao W H, Li J. Nanomaterials, 2019, 9(3): 460.

doi: 10.3390/nano9030460     URL    
[107]
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Langmuir, 2008, 24(13): 6409.

doi: 10.1021/la800951v     URL    
[108]
Yan J, Jeong Y G. Appl. Phys. Lett., 2014, 105(5): 051907.

doi: 10.1063/1.4892545     URL    
[109]
Wang Z G, Yang Y L, Zheng Z L, Lan R T, Dai K, Xu L, Huang H D, Tang J H, Xu J Z, Li Z M. Compos. Sci. Technol., 2020, 194: 108190.

doi: 10.1016/j.compscitech.2020.108190     URL    
[110]
Guo Y Q, Qiu H, Ruan K P, Zhang Y L, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[111]
Zhao B, Ma Z L, Sun Y Y, Han Y X, Gu J W. Small Struct., 2022, 3(10): 2200162.

doi: 10.1002/sstr.v3.10     URL    
[112]
Li Z W, Lin Z J, Han M S, Mu Y B, Yu P P, Zhang Y L, Yu J. Chem. Eng. J., 2021, 420: 129826.

doi: 10.1016/j.cej.2021.129826     URL    
[113]
Zhao B, Bai P W, Yuan M Y, Yan Z K, Fan B B, Zhang R, Che R C. Carbon, 2022, 197: 570.

doi: 10.1016/j.carbon.2022.06.010     URL    
[114]
Xing D, Rana M, Hao B, Zheng Q B, Ma P C. Electrochimica Acta, 2022, 427: 140847.

doi: 10.1016/j.electacta.2022.140847     URL    
[115]
Wang Z X, Jiao B, Qing Y C, Nan H Y, Huang L Q, Wei W, Peng Y, Yuan F, Dong H, Hou X, Wu Z X. ACS Appl. Mater. Interfaces, 2020, 12(2): 2826.

doi: 10.1021/acsami.9b17513     URL    
[1]
Wang H B, Teng K Y, Chen C, Li X J, Xu Z W, Chen L, Fu H J, Kuang L Y, Ma M J, Zhao L H. Mater. Lett., 2017, 186: 78.

doi: 10.1016/j.matlet.2016.09.086     URL    
[2]
Wang G L, Wang L, Mark L H, Shaayegan V, Wang G Z, Li H P, Zhao G Q, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(1): 1195.

doi: 10.1021/acsami.7b14111     URL    
[3]
Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J. Adv. Funct. Mater., 2019, 29(25): 1807398.

doi: 10.1002/adfm.v29.25     URL    
[4]
Thomassin J M, JÉrôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Mater. Sci. Eng. R Rep., 2013, 74(7): 211.

doi: 10.1016/j.mser.2013.06.001     URL    
[5]
Bhattacharjee Y, Chatterjee D, Bose S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30762.

doi: 10.1021/acsami.8b10819     URL    
[6]
Abbasi H, Antunes M, Velasco J I. Prog. Mater. Sci., 2019, 103: 319.

doi: 10.1016/j.pmatsci.2019.02.003     URL    
[7]
Zhang F F, Hu J S, Zhao P, He P, Mi H Y, Guo Z H, Liu C T, Shen C Y. Compos. A Appl. Sci. Manuf., 2021, 147: 106472.

doi: 10.1016/j.compositesa.2021.106472     URL    
[8]
Sang G L, Xu P, Yan T, Murugadoss V, Naik N, Ding Y S, Guo Z H. Nano Micro Lett., 2021, 13(1): 1.
[9]
Das N C, Khastgir D, Chaki T K, Chakraborty A. Compos. A Appl. Sci. Manuf., 2000, 31(10): 1069.

doi: 10.1016/S1359-835X(00)00064-6     URL    
[10]
Hong X H, Chung D D L. Carbon, 2017, 111: 529.

doi: 10.1016/j.carbon.2016.10.031     URL    
[11]
Chen Y, Zhang H B, Yang Y B, Wang M, Cao A Y, Yu Z Z. Adv. Funct. Mater., 2016, 26(3): 447.

doi: 10.1002/adfm.v26.3     URL    
[12]
Zhao B, Deng J S, Zhao C X, Wang C D, Chen yu guang, Hamidinejad M, Li R S, Park C B. J. Mater. Chem. C, 2020, 8(1): 58.

doi: 10.1039/C9TC04575A     URL    
[13]
Wang L, Qiu H, Liang C B, Song P, Han Y X, Han Y X, Gu J W, Kong J, Pan D, Guo Z H. Carbon, 2019, 141: 506.

doi: 10.1016/j.carbon.2018.10.003    
[14]
Jou W S, Cheng H Z, Hsu C F. J. Alloys Compd., 2007, 434/435: 641.

doi: 10.1016/j.jallcom.2006.08.203     URL    
[15]
Rohini R, Bose S. ACS Appl. Mater. Interfaces, 2014, 6(14): 11302.

doi: 10.1021/am502641h     URL    
[16]
Kim S, Oh J S, Kim M G, Jang W, Wang M, Kim Y, Seo H W, Kim Y C, Lee J H, Lee Y, Nam J D. ACS Appl. Mater. Interfaces, 2014, 6(20): 17647.

doi: 10.1021/am503893v     URL    
[116]
Wang L, Ma Z L, Qiu H, Zhang Y L, Yu Z, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[117]
Song P, Liu B, Liang C B, Ruan K P, Qiu H, Ma Z L, Guo Y Q, Gu J W. Nano Micro Lett., 2021, 13(1): 1.
[17]
Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, PÉrez del Pino A, Moshkalev S A, Matsuda A. Nano Res., 2019, 12(11): 2655.

doi: 10.1007/s12274-019-2467-8    
[18]
Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A. Compos. B Eng., 2019, 173: 106906.

doi: 10.1016/j.compositesb.2019.106906     URL    
[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[3] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[4] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[5] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[6] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[7] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(0203): 284-301.
[8] 陈润锋 郑超 范曲立 黄维. 高分子电致发光材料结构设计方法概述*[J]. 化学进展, 2010, 22(04): 696-705.