English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 189-205 DOI: 10.7536/PC220731   后一篇

• 综述 •

基于二氧杂环丁烷骨架的化学发光探针发展和应用研究

傅安辰1(), 毛彦佳2, 王宏博2, 曹志娟1,*   

  1. 1 复旦大学药学院 上海 201203
    2 中国医药工业研究总院科技成果转化中心 上海 201203
  • 收稿日期:2022-07-22 修回日期:2022-09-12 出版日期:2023-02-24 发布日期:2022-09-12
  • 作者简介:
    曹志娟 复旦大学药学院副教授,硕士生导师。2007年毕业于复旦大学药学院,获博士学位。2015年作为访问学者赴美国佛罗里达大学谭蔚泓课题组学习。主要研究方向为光学探针的设计及其药物和生物分子分析应用,包括荧光纳米探针和二氧杂环丁烷化学发光探针的设计以及核酸和蛋白酶等生物分子体内外分析。目前发表学术论文30余篇,获授权专利4项。主持项目有国家自然科学基金、上海市自然科学基金、上海市科学技术委员会和卫生健康委员会项目等7项。共同主持复旦大学附属闵行医院基础医学青年人才项目1项。
  • 基金资助:
    上海市科学技术委员会农业领域项目(21N31900500); 上海市卫生健康委员会项目(202140016); 复旦大学附属闵行医院基础医学青年人才项目(2021MHJC10)

Development and Application of Dioxetane-based Chemiluminescent Probes

Anchen Fu1(), Yanjia Mao2, Hongbo Wang2, Zhijuan Cao1   

  1. 1 School of Pharmacy, Fudan University,Shanghai 201203, China
    2 China State Institute of Pharmaceutical Industry, Incubation Center for S&T Achievements,Shanghai 201203, China
  • Received:2022-07-22 Revised:2022-09-12 Online:2023-02-24 Published:2022-09-12
  • Contact: *e-mail:zjcan@fudan.edu.cn
  • Supported by:
    Shanghai Agriculture Science and Technology Support Project(21N31900500); Shanghai Municipal Health Commission Project(202140016); project of Basic Medicine funded by Minhang Hospital, Fudan University(2021MHJC10)

光学分析法具有无损、实时和空间分辨能力的特点,是研究疾病发生、发展和诊疗的一种重要技术手段,包括荧光、生物发光和化学发光(CL)。近年来,以金刚烷稳定的二氧杂环丁烷为骨架的化学发光探针(AD-CL)获得关注。该探针不但具有无需激发光源,可避免光漂白、光毒性,灵敏度较高的CL法传统优势;且具有检测体系简单,无需氧化剂的参与,可在生理条件下发光等特点。最近,经过进一步的结构优化与改造,AD-CL骨架探针在生理条件下的发光性能大幅提升,在物质检测、光学成像等领域中的应用越来越广泛。本文综述了AD-CL探针的发光原理以及最新的研究进展,主要分为两部分:AD-CL探针的优化与改造策略以及AD-CL探针在不同物质检测的应用。

Optical analysis is non-destructive, real-time with a specific spatial resolution, which has been developed as an essential technology to study the occurrence, development, diagnosis, and treatment of diseases. It contains fluorescent (FL), bioluminescent (BL) and chemiluminescent (CL) methods. Among them, CL probes with an adamantane-dioxetane chemiluminescence (AD-CL) scaffold attracted much attention. Recently, significant improvement on these probes has been achieved with the elimination of external light source, low phototoxicity, high sensitivity, and a facile system without additional reagents, such as oxidants. Until now, the CL probes were further developed with special modifications and new synthesis routes based on the AD-CL scaffold, realizing the detection and optical imaging of various biomolecules in living systems with enhanced properties. Herein, the recent research progress on AD-CL probes has been reviewed. The review is divided into two parts. The first part will mainly introduce the molecular modification strategy of AD-CL probes and the second part will focus on their application in several cases.

Contents

1 Introduction

2 Modification of AD-CL probes

2.1 Intramolecular modification of AD-CL probes

2.2 Supramolecular modification of AD-CL probes

3 Application of AD-CL probes

3.1 Application on small molecules detection

3.2 Application on macromolecules detection

3.3 Application on pathogenic and drug-resistance bacteria detection

3.4 Other application

4 Conclusion and outlook

()
图1 AD-CL探针的化学发光进程
Fig.1 The activation pathway of the AD-CL probe
图2 AD-CL探针的分子改造方式:(A)增大化学发光强度——引入吸电子基团(EWG);(B)延长化学发光波长——引入近红外/荧光分子;(C)加快化学发光进程——引入苯氧基
Fig.2 Molecular modification of AD-CL probes: (A) Increase the intensity of CL-introduce the electron-withdrawing group; (B) elongate the wavelength of CL-introduce near-infrared/fluorescent molecules; (C) speed up the CL reaction-introduce the phenoxy group
图3 (A)通过连接基团连接多个AD-CL结构;(B)“多米诺”式级联的AD-CL结构
Fig.3 (A) Multiple AD-CL structures connected by the linking group; (B) the domino-cascaded AD-CL structure
图4 (A)基于CRET策略的化学发光-荧光能量转移;(B)基于分子间相互作用改善AD-CL化学发光性能的体系:(a)表面活性剂-荧光分子体系;(b)β-环糊精-荧光分子超分子体系;(c)基于两亲性聚合物的超分子体系
Fig.4 Using CRET strategy (A) and materials (B) to increase the CL intensity and prolong the CL wavelength of AD-CL probes: (a) Surfactant-fluorophore molecular system; (b) β-cyclodextrin-fluorophore supramolecular system; (c) the application of nanoprecipitation technology with amphiphilic substances
图5 (A)用于检测单线态氧的探针检测原理;(B)检测小分子的AD-CL探针;(C)“dual-lock”探针检测原理
Fig.5 (A) AD-CL probe for single oxygen detection and its mechanism; (B) AD-CL probe for detection of small molecules; (C) the schematic principle of dual-lock CL probe for detection
图6 (A)基于CRET策略的用于检测蛋白酶的探针检测原理;(B)检测生物大分子的AD-CL探针
Fig.6 (A) The schematic principle of the probe for protease detection based on CRET strategy; (B) AD-CL probes for detection of macromolecules
图7 可视化监测药物体内进程的Prodrug 1和Prodrug 2
Fig.7 Visualization of Prodrug 1 and Prodrug 2 for monitoring drug progression in vivo
图8 细菌检测用AD-CL探针
Fig.8 AD-CL probes for the detection of pathogenic and drug-resistant bacteria
图9 (A,B)化学发光-荧光双通道探针
Fig.9 (A,B)CL-FL duplex probes
表1 AD-CL探针的应用
Table 1 Applications of AD-CL probes
[1]
Siraj N, El-Zahab B, Hamdan S, Karam T E, Haber L H, Li M, Fakayode S O, Das S, Valle B, Strongin R M, Patonay G, Sintim H O, Baker G A, Powe A, Lowry M, Karolin J O, Geddes C D, Warner I M. Anal. Chem., 2016, 88(1): 170.

doi: 10.1021/acs.analchem.5b04109     URL    
[2]
Zhang Z, Lai J H, Wu K S, Huang X C, Guo S, Zhang L L, Liu J. Talanta, 2018, 180: 260.

doi: S0039-9140(17)31226-2     pmid: 29332809
[3]
Mezzanotte L, van ‘t Root M, Karatas H, Goun E A, Löwik C W G M. Trends Biotechnol., 2017, 35(7): 640.

doi: S0167-7799(17)30061-6     pmid: 28501458
[4]
Yan Y C, Shi P F, Song W L, Bi S. Theranostics, 2019, 9: 4047.

doi: 10.7150/thno.33228     URL    
[5]
Yang M W, Huang J G, Fan J L, Du J J, Pu K Y, Peng X J. Chem. Soc. Rev., 2020, 49(19): 6800.

doi: 10.1039/D0CS00348D     URL    
[6]
Gnaim S, Green O, Shabat D. Chem. Commun., 2018, 54(17): 2073.

doi: 10.1039/C8CC00428E     URL    
[7]
White E H, McCapra F, Field G F. J. Am. Chem. Soc., 1963, 85(3): 337.

doi: 10.1021/ja00886a019     URL    
[8]
Hummelen J C, Luider T M, Wynberg H. Pure Appl. Chem., 1987, 59(5): 639.

doi: 10.1351/pac198759050639     URL    
[9]
Schaap A P, Gagnon S D. J. Am. Chem. Soc., 1982, 104(12): 3504.

doi: 10.1021/ja00376a044     URL    
[10]
Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainaro R, Shabat D. Org. Biomol. Chem., 2018, 16(10): 1708.

doi: 10.1039/c8ob00087e     pmid: 29451576
[11]
Fu A C, Mao Y J, Wang H B, Cao Z J. J. Pharm. Biomed. Anal., 2021, 204: 114266.

doi: 10.1016/j.jpba.2021.114266     URL    
[12]
Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2017, 139(37): 13243.

doi: 10.1021/jacs.7b08446     pmid: 28853880
[13]
Huang J S, Jiang Y Y, Li J C, Huang J G, Pu K Y. Angew. Chem. Int. Ed., 2021, 60(8): 3999.

doi: 10.1002/anie.v60.8     URL    
[14]
Hananya N, Eldar Boock A, Bauer C R, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2016, 138(40): 13438.

pmid: 27652602
[15]
Hananya N, Reid J P, Green O, Sigman M S, Shabat D. Chem. Sci., 2019, 10(5): 1380.

doi: 10.1039/c8sc04280b     pmid: 30809354
[16]
Turan I S, Akkaya E U. Org. Lett., 2014, 16(6): 1680.

doi: 10.1021/ol5003412     URL    
[17]
Seven O, Sozmen F, Simsek Turan I. Sens. Actuat. B Chem., 2017, 239: 1318.

doi: 10.1016/j.snb.2016.09.120     URL    
[18]
Gnaim S, Shabat D. J. Am. Chem. Soc., 2017, 139(29): 10002.

doi: 10.1021/jacs.7b04804     URL    
[19]
Gnaim S, Gholap S P, Ge L, Das S, Gutkin S, Green O, Shelef O, Hananya N, Baran P S, Shabat D. Angewandte Chemie Int. Ed., 2022, 61(22): e202202187.
[20]
Gnaim S, Scomparin A, Eldar-Boock A, Bauer C R, Satchi-Fainaro R, Shabat D. Chem. Sci., 2019, 10(10): 2945.

doi: 10.1039/C8SC05174G     URL    
[21]
Ni X, Zhang X Y, Duan X C, Zheng H L, Xue X S, Ding D. Nano Lett., 2019, 19(1): 318.
[22]
Andronico L A, Chen L, Mirasoli M, Guardigli M, Quintavalla A, Lombardo M, Trombini C, Chiu D T, Roda A. Nanoscale, 2018, 10(29): 14012.

doi: 10.1039/c8nr03092h     pmid: 29995031
[23]
Cui D, Li J C, Zhao X H, Pu K Y, Zhang R P. Adv. Mater., 2020, 32(6): 1906314.

doi: 10.1002/adma.v32.6     URL    
[24]
Sies H. Redox Biol., 2017, 11: 613.

doi: 10.1016/j.redox.2016.12.035     URL    
[25]
Dickinson B C, Chang C J. Nat. Chem. Biol., 2011, 7(8): 504.

doi: 10.1038/nchembio.607     pmid: 21769097
[26]
Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D. ACS Cent. Sci., 2017, 3(4): 349.

doi: 10.1021/acscentsci.7b00058     URL    
[27]
Ye S, Hananya N, Green O, Chen H S, Zhao A Q, Shen J G, Shabat D, Yang D. Angew. Chem. Int. Ed., 2020, 59(34): 14326.

doi: 10.1002/anie.v59.34     URL    
[28]
Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. Angew. Chem. Int. Ed., 2017, 56(39): 11793.

doi: 10.1002/anie.201705803     pmid: 28749072
[29]
Yang M W, Zhang J W, Shabat D, Fan J L, Peng X J. ACS Sens., 2020, 5(10): 3158.

doi: 10.1021/acssensors.0c01291     URL    
[30]
Ye S, Yang B W, Wu M L, Chen Z F, Shen J G, Shabat D, Yang D. CCS Chem., 2022, 4(6): 1871.

doi: 10.31635/ccschem.021.202101108     URL    
[31]
An W W, Ryan L S, Reeves A G, Bruemmer K J, Mouhaffel L, Gerberich J L, Winters A, Mason R P, Lippert A R. Angew. Chem. Int. Ed., 2019, 58(5): 1361.

doi: 10.1002/anie.v58.5     URL    
[32]
Cao J, An W W, Reeves A G, Lippert A R. Chem. Sci., 2018, 9(9): 2552.

doi: 10.1039/C7SC05087A     URL    
[33]
Sun J Y, Hu Z A, Zhang S C, Zhang X R. ACS Sens., 2019, 4(1): 87.

doi: 10.1021/acssensors.8b00936     URL    
[34]
Klotz L O, Briviba K, Sies H. Methods Enzymol., 2000, 319: 130.
[35]
Beghetto C, Renken C, Eriksson O, Jori G, Bernardi P, Ricchelli F. Eur. J. Biochem., 2000, 267(17): 5585.

pmid: 10951218
[36]
Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115(4): 1990.

doi: 10.1021/cr5004198     URL    
[37]
Zhang H, Xu L Z, Chen W Q, Huang J, Huang C S, Sheng J R, Song X Z. Anal. Chem., 2019, 91(3): 1904.

doi: 10.1021/acs.analchem.8b03869     pmid: 30592207
[38]
Li X, Qian S J, He Q J, Yang B, Li J, Hu Y Z. Org. Biomol. Chem., 2010, 8(16): 3627.

doi: 10.1039/c004344c     URL    
[39]
Hou D Y, You Y, Wu X H, Li C, Wu S, Zhang C L, Xian Y Z. Sens. Actuat. B Chem., 2021, 332: 129508.

doi: 10.1016/j.snb.2021.129508     URL    
[40]
Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Angew. Chem. Int. Ed., 2018, 57(25): 7508.

doi: 10.1002/anie.201802143     pmid: 29635731
[41]
Zhang Y T, Yan C X, Wang C, Guo Z Q, Liu X G, Zhu W H. Angew. Chem. Int. Ed., 2020, 59(23): 9059.

doi: 10.1002/anie.v59.23     URL    
[42]
Schaap A P, Sandison M D, Handley R S. Tetrahedron Lett., 1987, 28(11): 1159.

doi: 10.1016/S0040-4039(00)95314-0     URL    
[43]
Gao L P, Li Y, Huang Z Z, Tan H L. Anal. Chimica Acta, 2021, 1148: 238193.

doi: 10.1016/j.aca.2020.12.068     URL    
[44]
Siegel D, Yan C, Ross D. Biochem. Pharmacol., 2012, 83(8): 1033.

doi: 10.1016/j.bcp.2011.12.017     pmid: 22209713
[45]
Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak J H, Sessler J L, Shabat D, Kim J S. Angew. Chem. Int. Ed., 2019, 58(6): 1739.

doi: 10.1002/anie.v58.6     URL    
[46]
Shelef O, Sedgwick A C, Pozzi S, Green O, Satchi-Fainaro R, Shabat D, Sessler J L. Chem. Commun., 2021, 57(86): 11386.

doi: 10.1039/D1CC05217A     URL    
[47]
Kakoti A, Kumar A K, Goswami P. J. Mol. Catal. B Enzym., 2012, 78: 98.

doi: 10.1016/j.molcatb.2012.03.013     URL    
[48]
Patel N G, Meier S, Cammann K, Chemnitius G C. Sens. Actuat. B Chem., 2001, 75(1/2): 101.

doi: 10.1016/S0925-4005(01)00545-7     URL    
[49]
Gnaim S, Shabat D. Org. Biomol. Chem., 2019, 17(6): 1389.

doi: 10.1039/C8OB03042A     URL    
[50]
An R B, Wei S X, Huang Z, Liu F, Ye D J. Anal. Chem., 2019, 91(21): 13639.

doi: 10.1021/acs.analchem.9b02839     URL    
[51]
Kim S J, Yoon J W, Yoon S A, Lee M H. Molecules, 2021, 26(4): 1088.

doi: 10.3390/molecules26041088     URL    
[52]
Sun J Y, Hu Z A, Wang R H, Zhang S C, Zhang X R. Anal. Chem., 2019, 91(2): 1384.

doi: 10.1021/acs.analchem.8b03955     URL    
[53]
Sun R, Wu X S, Mao Y J, Wang H B, Bian C, Lv P P, Zhao Z, Li X W, Fu W, Lu J Z, Cao Z J. Luminescence, 2022, 37(8): 1335.

doi: 10.1002/bio.v37.8     URL    
[54]
Fujimoto T, Tsunedomi R, Matsukuma S, Yoshimura K, Oga A, Fujiwara N, Fujiwara Y, Matsui H, Shindo Y, Tokumitsu Y, Suzuki N, Kobayashi S, Hazama S, Eguchi H, Nagano H. Oncol. Lett., 2020, 21(1): 30.
[55]
Roth-Konforti M E, Bauer C R, Shabat D,. Angew. Chem. Int. Ed., 2017, 56(49): 15633.
[56]
Fu A C, Wang H B, Huo T T, Li X W, Fu W, Huang R Q, Cao Z J. Anal. Chem., 2021, 93(16): 6501.

doi: 10.1021/acs.analchem.1c00413     URL    
[57]
Angelis G D, Rittenhouse H G, Mikolajczyk S D, Shamel L B, Semjonow A. Rev. Urol., 2007, 9: 113.
[58]
Gutkin S, Green O, Raviv G, Shabat D, Portnoy O. Bioconjugate Chem., 2020, 31(11): 2488.

doi: 10.1021/acs.bioconjchem.0c00500     pmid: 33090770
[59]
Hananya N, Press O, Das A, Scomparin A, Satchi-Fainaro R, Sagi I, Shabat D. Chem. Eur. J., 2019, 25(64): 14679.
[60]
Lenci E, Angeli A, Calugi L, Innocenti R, Carta F, Supuran C T, Trabocchi A. Eur. J. Med. Chem., 2021, 214: 113260.

doi: 10.1016/j.ejmech.2021.113260     URL    
[61]
Wohlschlaeger J, Stubbe H D, Schmitz K J, Kawaguchi N, Takeda A, Takeda N, Hinder F, Baba H A. Pathol. Res. Pract., 2005, 201(12): 809.

pmid: 16308106
[62]
Nguyen R, Wu H Y, Pounds S, Inaba H, Ribeiro R C, Cullins D, Rooney B, Bell T, Lacayo N J, Heym K, Degar B, Schiff D, Janssen W E, Triplett B, Pui C H, Leung W, Rubnitz J E. J. Immunotherapy Cancer, 2019, 7: 81.

doi: 10.1186/s40425-019-0564-6    
[63]
Scott J I, Gutkin S, Green O, Thompson E J, Kitamura T, Shabat D, Vendrell M. Angew. Chem. Int. Ed., 2021, 60(11): 5699.

doi: 10.1002/anie.v60.11     URL    
[64]
Chatterjee S K, Bhattacharya M, Barlow J J. Cancer Res., 1979, 39: 1943.

pmid: 445394
[65]
Redy-Keisar O, Kisin-Finfer E, Ferber S, Satchi-Fainaro R, Shabat D. Nat. Protoc., 2014, 9(1): 27.

doi: 10.1038/nprot.2013.166     pmid: 24309975
[66]
Gnaim S, Scomparin A, Das S, Blau R, Satchi-Fainaro R, Shabat D. Angew. Chem. Int. Ed., 2018, 57(29): 9033.

doi: 10.1002/anie.201804816     URL    
[67]
Roth-Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D. Angew. Chem. Int. Ed., 2019, 58(30): 10361.

doi: 10.1002/anie.201904719     pmid: 31233265
[68]
Sher A A, Mustafa B E, Grady S C, Gardiner J C, Saeed A M. Int. J. Infect. Dis., 2021, 105: 54.

doi: 10.1016/j.ijid.2021.02.022     URL    
[69]
Yang X Y, Jiang Y J, Song Y, Qin X, Ren Y W, Zhao Y M, Man C X, Zhang W. Int. Dairy J., 2021, 118: 105022.

doi: 10.1016/j.idairyj.2021.105022     URL    
[70]
Fan Y L, Paoli G, Song M H, Shi X M, Yang M C. J. Chin. Inst. Food Sci. Technol., 2021, 21(3): 253.
(范一灵, George C.Paoli, 宋明辉, 史贤明, 杨美成. 中国食品学报, 2021, 21(3): 253.).
[71]
Babin B M, Fernandez-Cuervo G, Sheng J, Green O, Ordonez A A, Turner M L, Keller L J, Jain S K, Shabat D, Bogyo M. ACS Cent. Sci., 2021, 7(5): 803.

doi: 10.1021/acscentsci.0c01345     URL    
[72]
Che H J, Liao Q F, Wu S Y, Liu Y, Zhang W L, Peng L, Zhou Y, Kang M. Modern Preventive Medicine, 2021, 48: 524.
(车辉娟, 廖全凤, 吴思颖, 刘雅, 张为利, 彭丽, 周益, 康梅. 现代预防医学, 2021, 48: 524.).
[73]
Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chem. Eur. J., 2020, 26(16): 3647.

doi: 10.1002/chem.v26.16     URL    
[74]
Gholap S P, Yao C Y, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D. Bioconjugate Chem., 2021, 32(5): 991.

doi: 10.1021/acs.bioconjchem.1c00149     URL    
[75]
Wu Z, Liu M M, Liu Z C, Tian Y. J. Am. Chem. Soc., 2020, 142(16): 7532.

doi: 10.1021/jacs.0c00771     URL    
[76]
Yang L, Zhang Y, Ren X J, Wang B H, Yang Z G, Song X Z, Wang W. Anal. Chem., 2020, 92(6): 4387.

doi: 10.1021/acs.analchem.9b05270     pmid: 32098470
[77]
Cheng P H, Miao Q Q, Li J C, Huang J G, Xie C, Pu K Y. J. Am. Chem. Soc., 2019, 141(27): 10581.

doi: 10.1021/jacs.9b02580     URL    
[78]
Huang J G, Li J C, Lyu Y, Miao Q Q, Pu K Y. Nat. Mater., 2019, 18(10): 1133.

doi: 10.1038/s41563-019-0378-4    
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[4] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[5] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[6] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[10] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[11] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[12] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[13] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[14] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[15] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.