English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1461-1472 DOI: 10.7536/PC200829   后一篇

• 综述 •

检测有机磷神经毒剂及模拟物的荧光探针

李斌1,2, 付艳艳1,3,*(), 程建功1,3,*()   

  1. 1 中国科学院上海微系统与信息技术研究所 上海 200050
    2 上海科技大学物质科学与技术学院 上海 201210
    3 中国科学院大学材料与光电研究中心 北京 100049
  • 收稿日期:2020-08-19 修回日期:2020-10-27 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 付艳艳, 程建功
  • 基金资助:
    科技部重点研发计划(2016YFA0200804); 国家自然科学基金项目(62022085); 国家自然科学基金项目(61831021); 国家自然科学基金项目(61771460); 国家自然科学基金项目(61901456); 国家自然科学基金项目(51641307)

Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants

Bin Li1,2, Yanyan Fu1,3(), Jiangong Cheng1,3()   

  1. 1 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 200050, China
    2 School of Physical Science and Technology, ShanghaiTech University,Shanghai 201210, China
    3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-08-19 Revised:2020-10-27 Online:2021-09-20 Published:2020-12-28
  • Contact: Yanyan Fu, Jiangong Cheng
  • Supported by:
    Research Programs from Ministry of Science and Technology of China(2016YFA0200804); National Natural Science Foundation of China(62022085); National Natural Science Foundation of China(61831021); National Natural Science Foundation of China(61771460); National Natural Science Foundation of China(61901456); National Natural Science Foundation of China(51641307)

有机磷神经毒剂是一类具有极大杀伤力的化学毒剂,这类有机磷酸盐通过破坏人体内的神经递质乙酰胆碱酯酶麻痹人的中枢神经,很小的剂量就可致人死亡,因此对有机磷神经毒剂进行快速简便地检测具有重要意义。荧光化学传感具有灵敏度高、选择性好和响应时间短等优点,近些年来应用荧光传感方法对有机磷神经毒剂及其模拟物的检测越来越受到研究人员的关注。本篇综述对荧光传感的原理做了简要介绍,综述了近年来国内外研究者开发的各种用于有机磷神经毒剂及其模拟物检测的荧光新材料与新方法,并对荧光传感方法应用于有机磷神经毒剂检测的未来进行了展望。

Organophosphorus nerve agents are a kind of chemical weapon with great killing power, which paralyze the central nervous system of human body by destroying the neurotransmitter acetylcholinesterase. A very small dose can cause death. Therefore, it is of great significance for the rapid and simple detection of organophosphorus nerve agents. Fluorescence chemical sensing has the advantages of high sensitivity, good selectivity, and short response time. In recent years, the detection of organophosphorus nerve agents and their simulants using fluorescent sensing methods has attracted increasing attention. In this paper, the principle of fluorescence sensing is briefly introduced, and various new fluorescent materials and methods developed by researchers at home and abroad in recent years for the detection of organophosphorus nerve agents and simulants are reviewed. The prospect of the application of fluorescence sensing methods in the detection of organophosphorus nerve agents is also discussed.

Contents

1 Introduction

2 Fluorescence detection of organophosphorus nerve agents and simulants

2.1 Nitrogen-based nucleophiles

2.2 Oxygen-based nucleophiles

2.3 Nitrogen-oxygen bifunctional nucleophiles

3 Conclusion and outlook

()
图1 有机磷神经毒剂及其模拟物的结构[15]
Fig.1 Structure of organophosphorus nerve agents and simulants[15]
图2 基于N官能团的荧光探针
Fig.2 Fluorescent probes based on N functional group
图3 探针1与DCP的反应[21]
Fig.3 Reaction of probe 1 and DCP[21]
图4 探针6对DCP的检测示意图[26]
Fig.4 Schematic diagram of DCP detection by probe 6[26]
图5 探针8与DCP的反应[28]
Fig.5 Reaction of probe 8 and DCP[28]
图6 利用探针16纳米纤维放大比率荧光检测DCP的示意图[36]
Fig.6 Schematic representation of amplified ratiometric fluorescence detection of DCP using probe 16 nanofibers[36]
图7 基于O官能团的荧光探针
Fig.7 Fluorescent probes based on O functional group
图8 基于PDA脂质体的有机磷检测策略示意图[42]
Fig.8 Schematic illustration of the PDA liposome-based organophosphate detection strategy[42]
图9 探针23与DCP的反应[18]
Fig.9 Reaction of probe 23 and DCP[18]
图10 探针25与DCP、DEMP和DECP的反应[44]
Fig.10 Reaction of probe 25 and DCP, DEMP & DECP[44]
图11 探针35与DCP的反应[54]
Fig.11 Reaction of probe 35 and DCP[54]
图12 探针42与DCP的反应[61]
Fig.12 Reaction of probe 42 and DCP[61]
图13 基于N、O 双官能团的反应
Fig.13 Fluorescent probes based on N,O bifunctional group
图14 探针53与DCP的反应[72]
Fig.14 Reaction of probe 53 and DCP[72]
图15 探针57与DCP的反应[76]
Fig.15 Reaction of probe 57 and DCP[76]
[1]
Costanzi S, Machado J H, Mitchell M. ACS Chem. Neurosci., 2018, 9: 873.

doi: 10.1021/acschemneuro.8b00148     pmid: 29664277
[2]
Delfino R T, Ribeiro T S, Figueroa-Villar J D. J. Braz. Chem. Soc., 2009, 20: 407.
[3]
Gupta R C. Handbook of Toxicology Of Chemical Warfare Agents. London: Academic Press, 2009.
[4]
Ehrich M. Organophosphates, in Encyclopedia of Toxicology. San Diego: Academic Press, 1998. 467.
[5]
Ohbu S, Yamashina A, Takasu N, Yamaguchi T, Murai T, Nakano K, Matsui Y, Mikami R, Sakurai K, Hinohara S. South. Med. J., 1997, 90: 587.

pmid: 9191733
[6]
John H, van der Schans M J, Koller M, Spruit H E T, Worek F, Thiermann H, Noort D. Forensic Toxicol., 2018, 36: 61.

doi: 10.1007/s11419-017-0376-7     URL    
[7]
Buteau C, Duitschaever C L, Ashton G C. J. Chromatogr. A, 1984, 284: 201.

doi: 10.1016/S0021-9673(01)87816-X     URL    
[8]
Pietsch J, Hampel S, Schmidt W, Brauch H J, Worch E. Fresenius J. Anal. Chem., 1996, 355: 164.
[9]
Walker J P, Asher S A. Anal. Chem., 2005, 77: 1596.

doi: 10.1021/ac048562e     URL    
[10]
Liu G, Lin Y. Anal. Chem., 2006, 78: 835.

doi: 10.1021/ac051559q     URL    
[11]
Hill H H, Martin S J. Pure Appl. Chem., 2002, 74: 2281.

doi: 10.1351/pac200274122281     URL    
[12]
Brown K. Science, 2004, 305: 1228.

doi: 10.1126/science.305.5688.1228     URL    
[13]
Hakonen A, Rindzevicius T, Schmidt M S, Andersson P O, Juhlin L, Svedendahl M, Boisen A, Kall M. Nanoscale, 2016, 8: 1305.

doi: 10.1039/c5nr06524k     pmid: 26676552
[14]
Zhou X, Lee S, Xu Z, Yoon J. Chem. Rev., 2015, 115: 7944.

doi: 10.1021/cr500567r     pmid: 25651137
[15]
Fan S Q, Zhang G R, Dennison G H, FitzGerald N, Burn P L, Gentle I R, Shaw P E. Adv. Mater., 2020, 32: 11.
[16]
Giri D, Patra S K. RSC Adv., 2015, 5: 79011.

doi: 10.1039/C5RA14079J     URL    
[17]
Jung H S, Verwilst P, Kim W Y, Kim J S. Chem. Soc. Rev., 2016, 45: 1242.

doi: 10.1039/C5CS00494B     URL    
[18]
Hao H, Luo H, Yi A, Liu C, Xu B, Shi G, Chi Z. Org. Electron., 2019, 69: 281.

doi: 10.1016/j.orgel.2019.03.029     URL    
[19]
Xuan W, Cao Y, Zhou J, Wang W. Chem. Commun., 2013, 49: 10474.

doi: 10.1039/c3cc46095a     URL    
[20]
Wu J, Zou Y, Li C, Sicking W, Piantanida I, Yi T, Schmuck C. J. Am. Chem. Soc., 2012, 134: 1958.

doi: 10.1021/ja2103845     URL    
[21]
Bencic-Nagale S, Sternfeld T, Walt D R. J. Am. Chem. Soc., 2006, 128: 5041.

pmid: 16608338
[22]
Singh V V, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, Wang J. Chem. Commun., 2015, 51: 11190.

doi: 10.1039/C5CC04120A     URL    
[23]
Díaz de Grenu B, Moreno D, Torroba T, Berg A, Gunnars J, Nilsson T, Nyman R, Persson M, Pettersson J, Eklind I, Wasterby P. J. Am. Chem. Soc., 2014, 136: 4125.

doi: 10.1021/ja500710m     URL    
[24]
Sarkar S, Shunmugam R. Chem. Commun., 2014, 50: 8511.

doi: 10.1039/C4CC03361B     URL    
[25]
Yadav P, Gill H S, Chand K, Li L, Kumar J, Sharma S K. Sensors, 2015, 15.
[26]
Yao J, Fu Y, Xu W, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J. Anal. Chem., 2016, 88: 2497.

doi: 10.1021/acs.analchem.5b04777     URL    
[27]
Kim Y, Jang Y J, Lee D, Kim B S, Churchill D G. Sens. Actuat. B: Chem., 2017, 238: 145.

doi: 10.1016/j.snb.2016.07.056     URL    
[28]
So H S, Angupillai S, Son Y A. Sens. Actuators B Chem., 2016, 235: 447.

doi: 10.1016/j.snb.2016.05.106     URL    
[29]
Zhou X, Zeng Y, Liyan C, Wu X, Yoon J. Angew. Chem. Int. Ed., 2016, 55: 4729.

doi: 10.1002/anie.201601346     URL    
[30]
Huang S, Wu Y, Zeng F, Sun L, Wu S. J. Mater. Chem. C, 2016, 4: 10105.

doi: 10.1039/C6TC03116A     URL    
[31]
Khan M S J, Wang Y W, Senge M O, Peng Y. J. Hazard. Mater., 2018, 342: 10.

doi: 10.1016/j.jhazmat.2017.08.009     URL    
[32]
Cai Y C, Li C, Song Q H. ACS Sensors, 2017, 2: 834.

doi: 10.1021/acssensors.7b00205     URL    
[33]
Jiang H, Wu P, Zhang Y, Jiao Z, Xu W, Zhang X, Fu Y, He Q, Cao H, Cheng J. Anal. Methods, 2017, 9: 1748.

doi: 10.1039/C6AY03427F     URL    
[34]
Aich K, Das S, Gharami S, Patra L, Kumar Mondal T. New J. Chem., 2017, 41: 12562.

doi: 10.1039/C7NJ02543B     URL    
[35]
Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J. ACS Sensors, 2018, 3: 1445.

doi: 10.1021/acssensors.8b00313     URL    
[36]
Sun C, Xiong W, Ye W, Zheng Y, Duan R, Che Y, Zhao J. Anal. Chem., 2018, 90: 7131.

doi: 10.1021/acs.analchem.8b01810     URL    
[37]
Dey N, Jha S, Bhattacharya S. Analyst, 2018, 143: 528.

doi: 10.1039/C7AN01058C     URL    
[38]
Li X, Lv Y, Chang S, Liu H, Mo W, Ma H, Zhou C, Zhang S, Yang B. Anal. Chem., 2019, 91: 10927.

doi: 10.1021/acs.analchem.9b02085     URL    
[39]
Zeng L, Zeng H, Jiang L, Wang S, Hou J T, Yoon J. Anal. Chem., 2019, 91: 12070.

doi: 10.1021/acs.analchem.9b03230     URL    
[40]
Ghosh A, Das S, Mandal S, Sahoo P. New J. Chem., 2019, 43: 16968.

doi: 10.1039/C9NJ03327K     URL    
[41]
Gotor R, Costero A M, Gil S, Parra M, Martinez-Manez R, Sancenón F. Chem. Eur. J., 2011, 17: 11994.

doi: 10.1002/chem.201102241     URL    
[42]
Lee J, Seo S, Kim J. Adv. Funct. Mater., 2012, 22: 1632.

doi: 10.1002/adfm.v22.8     URL    
[43]
Jang Y J, Murale D P, Churchill D G. Analyst, 2014, 139: 1614.

doi: 10.1039/c3an02267f     URL    
[44]
Jang Y J, Tsay O G, Murale D P, Jeong J A, Segev A, Churchill D G. Chem. Commun., 2014, 50: 7531.

doi: 10.1039/C4CC02689F     URL    
[45]
Rusu A D, Moleavin I A, Hurduc N, Hamel M, Rocha L. Chem. Commun., 2014, 50: 9965.

doi: 10.1039/C4CC03580A     URL    
[46]
Barba-Bon A, Costero A M, Gil S, Martínez-Manez R, Sancenon F. Org. Biomol. Chem., 2014, 12: 8745.

doi: 10.1039/c4ob01299b     pmid: 25260024
[47]
Goud D R, Pardasani D, Tak V, Dubey D K. RSC Adv., 2014, 4: 24645.

doi: 10.1039/c4ra02742f     URL    
[48]
El Sayed S, Pascual L, Agostini A, Martinez-Manez R, Sancenón F, Costero A M, Parra M, Gil S. ChemistryOpen, 2014, 3: 142.

doi: 10.1002/open.v3.4     URL    
[49]
Belger C, Weis J G, Egap E, Swager T M. Macromolecules, 2015, 48: 7990.

doi: 10.1021/acs.macromol.5b01406     URL    
[50]
Qi Y Y, Sun X H, Chang X M, Kang R, Liu K Q, Fang Y. Acta Phys.-Chim. Sin., 2016, 32: 373.

doi: 10.3866/PKU.WHXB201511091     URL    
[51]
Xu W, Fu Y, Yao J, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J. ACS Sensors, 2016, 1: 1054.

doi: 10.1021/acssensors.6b00366     URL    
[52]
Lu Z, Fan W, Shi X, Black C A, Fan C, Wang F. Sens. Actuators B Chem., 2018, 255: 176.

doi: 10.1016/j.snb.2017.08.019     URL    
[53]
Manna A, Jana K, Guchhait N, Goswami S. New J. Chem., 2017, 41: 6661.

doi: 10.1039/C7NJ00598A     URL    
[54]
Cai Y C, Li C, Song Q H. J. Mater. Chem. C, 2017, 5: 7337.

doi: 10.1039/C7TC02617J     URL    
[55]
Kim Y, Jang Y J, Mulay S V, Nguyen T T T, Churchill D G. Chem. Eur. J., 2017, 23: 7785.

doi: 10.1002/chem.v23.32     URL    
[56]
Liu X, Gong Y, Zheng Y, Xiong W, Wang C, Wang T, Che Y, Zhao J. Anal. Chem., 2018, 90: 1498.

doi: 10.1021/acs.analchem.7b04698     URL    
[57]
Ali S S, Gangopadhyay A, Pramanik A K, Samanta S K, Guria U N, Manna S, Mahapatra A K. Analyst, 2018, 143: 4171.

doi: 10.1039/C8AN01012A     URL    
[58]
Liu H, Fu Y, Liu A, Yu Y, He Q, Cao H, Cheng J. Anal. Methods, 2018, 10: 1709.

doi: 10.1039/C8AY00050F     URL    
[59]
Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L. Anal. Chim. Acta, 2019, 1076: 125.

doi: 10.1016/j.aca.2019.05.025     URL    
[60]
Jung Y, Kim D. Materials, 2019, 12: 2943.

doi: 10.3390/ma12182943     URL    
[61]
Wu X, Wu Z, Han S. Chem. Commun., 2011, 47: 11468.

doi: 10.1039/c1cc15250e     URL    
[62]
Wu W H, Dong J J, Wang X, Li J, Sui S H, Chen G Y, Liu J W, Zhang M. Analyst, 2012, 137: 3224.

doi: 10.1039/c2an35428d     URL    
[63]
Wu Z, Wu X, Yang Y, Wen T B, Han S. Bioorg. Med. Chem. Lett., 2012, 22: 6358.

doi: 10.1016/j.bmcl.2012.08.077     URL    
[64]
Goswami S, Manna A, Paul S. RSC Adv., 2014, 4: 21984.

doi: 10.1039/C4RA01060D     URL    
[65]
Heo G, Manivannan R, Kim H, Son Y A. Dyes Pigments, 2019, 171: 107712.

doi: 10.1016/j.dyepig.2019.107712     URL    
[66]
Li S, Zheng Y, Chen W, Zheng M, Zheng H, Zhang Z, Cui Y, Zhong J, Zhao C. Molecules, 2019, 24: 827.

doi: 10.3390/molecules24050827     URL    
[67]
Gotor R, Costero A M, Gavina P, Gil S. Dyes Pigments, 2014, 108: 76.

doi: 10.1016/j.dyepig.2014.04.011     URL    
[68]
Lei Z, Yang Y. J. Am. Chem. Soc., 2014, 136: 6594.

doi: 10.1021/ja502945q     URL    
[69]
Mahapatra A K, Maiti K, Manna S K, Maji R, Mondal S, Das Mukhopadhyay C, Sahoo P, Mandal D. Chem. Commun., 2015, 51: 9729.

doi: 10.1039/C5CC02991K     URL    
[70]
Hu X X, Su Y T, Ma Y W, Zhan X Q, Zheng H, Jiang Y B. Chem. Commun., 2015, 51: 15118.

doi: 10.1039/C5CC04630K     URL    
[71]
Balamurugan A, Lee H I. Macromolecules, 2016, 49: 2568.

doi: 10.1021/acs.macromol.6b00309     URL    
[72]
Climent E, Biyikal M, Gawlitza K, Dropa T, Urban M, Costero A M, Martinez-Manez R, Rurack K. Sens. Actuators B Chem., 2017, 246: 1056.

doi: 10.1016/j.snb.2017.02.115     URL    
[73]
Jang Y J, Mulay S V, Kim Y, Jorayev P, Churchill D G. New J. Chem., 2017, 41: 1653.

doi: 10.1039/C6NJ03712G     URL    
[74]
Ali S S, Gangopadhyay A, Maiti K, Mondal S, Pramanik A K, Guria U N, Uddin M R, Mandal S, Mandal D, Mahapatra A K. Org. Biomol. Chem., 2017, 15: 5959.

doi: 10.1039/C7OB01252G     URL    
[75]
Lloyd E P, Pilato R S, Van Houten K A. ACS Omega, 2018, 3: 16028.

doi: 10.1021/acsomega.8b02313     pmid: 30556023
[76]
Ali S S, Gangopadhyay A, Pramanik A K, Guria U N, Samanta S K, Mahapatra A K. Dyes Pigments, 2019, 170: 107585.

doi: 10.1016/j.dyepig.2019.107585     URL    
[77]
Puglisi R, Pappalardo A, Gulino A, Trusso Sfrazzetto G. ACS Omega, 2019, 4: 7550.

doi: 10.1021/acsomega.9b00502     URL    
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[5] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[6] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[11] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[12] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[15] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.