English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 318-329 DOI: 10.7536/PC220706 前一篇   后一篇

• 综述 •

混合能量采集太阳能电池―从原理到应用

郭琪瑶1, 段加龙1, 赵媛媛2, 周青伟1, 唐群委1,*()   

  1. 1 山东科技大学化学与生物工程学院碳中和研究院 青岛 266590
    2 山东科技大学机械电子工程学院 青岛 266590
  • 收稿日期:2022-07-08 修回日期:2022-08-30 出版日期:2023-02-24 发布日期:2022-09-19
  • 作者简介:
    唐群委 博士、山东科技大学化学与生物工程学院碳中和研究院院长、教授、博士生导师,闽江学者、广东省杰出青年基金获得者、山东省杰出青年基金获得者、青岛西海岸新区创新创业团队领军人才。长期从事新型太阳能电池的应用基础研究和应用开发,以第一/通讯作者在Angewandte Chemie International Edition、Advanced Materials刊物发表SCI论文350余篇,H指数为58。以第一著作人出版《光电子材料与器件专著》并入选“十二五”国家重点图书出版规划项目。获授权国家发明专利22件,主持国家重点研发计划、国家自然科学基金等20余项课题。荣获高等学校科学研究优秀成果奖二等奖、云南省科学技术一等奖等4项省(部)级科技奖励。入选2020、2021年度中国高被引学者,2021年度全球终身科学影响力排行榜,2021、2022年度全球顶尖前10万科学家榜单。兼任国家科学技术奖评审专家、国家重点研发计划会议评审专家等。
  • 基金资助:
    国家重点研发计划(2021YFE0111000); 国家自然科学基金项目(U1802257); 国家自然科学基金项目(22179051); 国家自然科学基金项目(61774139); 广东省杰出青年基金项目(2019B151502061)

Hybrid Energy Harvesting Solar Cells―From Principles to Applications

Qiyao Guo1, Jialong Duan1, Yuanyuan Zhao2, Qingwei Zhou1, Qunwei Tang1()   

  1. 1 Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology,Qingdao 266590, China
    2 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology,Qingdao 266590, China
  • Received:2022-07-08 Revised:2022-08-30 Online:2023-02-24 Published:2022-09-19
  • Contact: *e-mail: tangqunwei@sdust.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFE0111000); National Natural Science Foundation of China(U1802257); National Natural Science Foundation of China(22179051); National Natural Science Foundation of China(61774139); Natural Science Foundation of Guangdong Province(2019B151502061)

光伏是解决能源和环境问题的战略性选择之一,目前已开发的太阳能电池均需在太阳光或室内光照射下通过光伏效应激发光生电子并输出电能,而在降雨、夜晚等弱光或无光环境下的输出功率较低,开发应用环境多元化的混合能量采集太阳能电池有望进一步提高输出功率、延长发电时间。本综述旨在探讨混合能量采集太阳能电池中光伏效应与水伏效应、摩擦电效应、储光―发光效应、压电效应和热电效应的耦合机制,重点总结了这类新型太阳能电池的应用现状,展望其未来的发展方向。

Photovoltaics are one of the strategic solutions to solve energy and environmental problems. The state-of-the-art solar cells always photo-induce electrons and generate electricity by the photovoltaic effect under the illumination of sunlight or indoor light, but the power output is still extremely low in dark-light or nonluminous conditions such as rainfall and night. The hybrid energy harvesting solar cells that can persistently output electricity in multiple weather are expected to further increase total power output and generating time. This perspective focuses on discussing the coupling principles of photovoltaic effect with hydrovoltaic effect, triboelectric effect, light storing-emitting effect, piezoelectric effect and thermoelectric effect in hybrid energy harvesting solar cells and summarizing the recent advances of these novel solar cells as well as analyzing the future development of this field.

Contents

1 Introduction

2 Hybrid energy harvesting solar cells for harvesting raindrop energy

2.1 Hydrovoltaic effect

2.2 Triboelectric effect

3 Hybrid energy harvesting solar cells based on solar energy storing-emitting effect

4 Hybrid energy harvesting solar cells based on piezoelectric and thermoelectric effects

5 Conclusions and outlook

()
图1 (a) 0.6 mol/L的NaCl液滴在单层石墨烯表面滑动产生水伏电势的器件结构、原理及电学输出[20]。(b) 通过水伏效应与光伏效应耦合构建的混合能量采集太阳能电池器件与电流、电压输出[39]。(c) 模拟雨滴在石墨烯表面铺展/收缩过程中测试的循环伏安曲线[40]。(d) 在测定雨滴与G-CB/PTFE复合电极时,输出电压随G-CB含量的变化[41]。(e) 利用偏光显微镜观察的绢云母在复合材料中的分布[41]
Fig.1 (a) The device structure, principle and electric outputs of moving a 0.6 mol/L NaCl aqueous droplet on monolayer graphene to create hydrovoltaic potentials[20]. (b) The structure and current and voltage outputs of hybrid energy harvesting solar cell by coupling hydrovoltaic and photovoltaic effects[39]. (c) The CV curves for symmetric dummy cells from graphene film /raindrop[40]. (d) Voltage data created by dropping simulated raindrops on G-CB/PTFE electrode[41]. (e) The polarizing microscopic image of sericite in its composite[41]
图2 (a) 水蒸气在碳黑薄膜孔道流动产生流动电势的装置结构以及单结和四结电池的电压输出[46]。(b) 可同时转换太阳能和蒸发能的碳基全无机CsPbBr3钙钛矿太阳能电池的J-V曲线及受水蒸气刺激产生的电流、电压输出[47]
Fig.2 (a) The set-up for measuring evaporation-induced voltage as well as the voltage outputs of single- and multi-junction cells[46]. (b) J-V curves for the carbon-based all-inorganic CsPbBr3 perovskite solar cell as well as current and voltage outputs induced by water-vapor[47]
图3 (a) 液-固型TENG/硅太阳能电池叠层器件结构及其在标准太阳光照和模拟降雨的输出性能[48]。(b) 液-固和固-固耦合型TENG/硅太阳能电池叠层器件结构[49]。(c) 基于褶皱PDMS薄膜的TENG/硅太阳能电池结构与J-V曲线[50]
Fig.3 (a) The structure of liquid-solid TENG/Si solar cell device and the performances under standard sunlight irradiation or simulated raining conditions[48]. (b) The device structure of coupling liquid-solid and solid-solid TENG/Si solar cell tandem[49]. (c) J-V curves based on nano-wrinkled PDMS TENG/Si solar cell[50]
图4 (a) 基于三电极液-固型TENG/单晶硅叠层的混合能量采集太阳能电池结构[52]。(b) 静电场增强光生内建电场机制[52]。(c) 光伏性能[52]。(d) 光伏建筑一体化示意图[53]。(e) 三种模拟降水密度下TENG的Isc,充电电路图以及混合系统对商用电容器充电过程的电压曲线[53]
Fig.4 (a) The hybrid energy harvesting solar cell device based on three-electrode-typed liquid-solid TENG/Si tandem[52]. (b) The enhanced build-in electric field assisted by electrostatic field[52]. (c) The photovoltaic performances[52]. (d) Schematic illustration of BIPV[53]. (e) Isc of TENG under three different simulated precipitation densities; Diagram of the charging circuit and voltage curves of a commercial capacitor charging process by hybrid system[53]
图5 (a) 染料敏化太阳能电池在1个标准太阳光照和黑暗环境的J-V曲线[54]。(b) 基于长余辉材料的混合能量采集太阳能电池结构[54]。(c) N719-TiO2/LPP光阳极经光照1 min后的照片及其DSSC的效果图[54]。(d) N719-TiO2/LPP光阳极的PL激发谱[54]。(e) 混合能量采集太阳能电池在黑暗环境的J-V曲线[54]。(f) 基于储光-发光效应构建的双面DSSC器件结构以及(g) 工作原理[55]。(h) TiO2/LPP阳极的激发和发射光谱及其DSSC的J-V曲线[55]
Fig.5 (a) The J-V curves of a traditional DSSC recorded under one standard sun and in the dark[54]. (b) The device structure of hybrid energy harvesting solar cell based on LPPs[54]. (c) Schematic diagrams of photoluminescence for N719-TiO2/LPP photoanodes and their hybrid energy harvesting solar cells at nights[54]. (d) The PL emission of N719-TiO2/LPP photoanodes[54]. (e) The J-V curves of hybrid energy harvesting solar cells recorded in the dark[54]. (f) The device structure and (g) working principle of a bifacial DSSC based on light storing-emitting effect[55]. (h) The excitation and emission spectra of the TiO2/LPP anode as well as J-V curves of their DSSCs[55]
图6 (a) 基于SAED骨架层PSC器件结构图[56]。(b) SAED改性前后器件的IPCE图谱以及SAED层激发和发射光谱[56]。(c) SAED长余光发射光谱及发光机理[56]。(d) YOS发光机理[57]。(e) 基于YOS骨架层PSC器件能级排列示意图以及(f) J-V曲线[57]
Fig.6 (a) Structure of SAED-based PSCs[56]. (b) The IPCE spectra of PSCs with and without SAED. The inset shows the excitation and emission spectra of the SAED film[56]. (c) Afterglow characteristics of SAED film, the insets show the phosphorescence mechanism[56]. (d) A schematic diagram of the afterglow mechanism of YOS[57]. (e) Band alignment and (f) J-V curves for hysteresis effect at forward and reverse scan of YOS-based mesoporous PSCs[57]
图7 (a) 基于压电光电子效应构建的硅基纳米异质结太阳能电池[60]。(b) 未施加压应力和施加压应力时p-n结的能带结构图[60]。(c) 太阳能电池在施加不同压应力时的J-V曲线[60]。(d) 柔性钙钛矿电池器件中压电光电子效应原理图和能带图[61]。(e) 连续静态压缩应变下器件的J-V曲线[61]。(f) 光电转换效率和短路电流密度在连续静态压缩应变下的依赖关系[61]
Fig.7 (a) The device structure of a silicon heterojunction solar cell based on piezo-phototronic effect[60]. (b) The energy band diagrams for the p-n junction contacts with and without positive press[60]. (c) The J-V curves of the solar cell recorded under different presses[60]. (d) Schematics and energy-band diagrams demonstrating the piezo-phototronic effect on device[61]. (e) J-V curves of devices with continuous static tensile strains[61]. (f) Dependences of PCE and Jsc under continuous static tensile strains[61]
图8 (a) AM 1.5G太阳光谱[63]。(b) 基于NaCo2O4/TiO2纳米线的钙钛矿太阳能电池结构及电子在光阳极中的传输路径[62]。(c) 钙钛矿太阳能电池在不同温差时的J-V曲线[62]。(d) 杂化钙钛矿太阳能电池/热电叠层器件结构及(e) 等效电路图[63]。(f) 叠层不同数量热电器件时杂化电池的J-V曲线[63]
Fig.8 (a) AM 1.5G solar spectrum[63]. (b) The perovskite solar cell structure based on NaCo2O4/TiO2 nanowires and electron transport route across photoanode[62]. (c) The J-V curves of the perovskite solar cell recorded at various temperature differences[62]. (d) The perovskite/thermoelectric hybrid device structure and (e) corresponding equivalent electric circuit diagram[63]. (f) J-V curves of the hybrid devices containing different numbers of thermoelectric modules under AM 1.5G sunlight[63]
[57]
Zhuang X, Wu Y, Liu S, Bi W, Chen X, Liu L, Chen C, Liu D, Dai Q, Song H W. J. Power Sources, 2020, 477: 228757.

doi: 10.1016/j.jpowsour.2020.228757     URL    
[58]
Yang Q, Guo X, Wang W, Zhang Y, Xu S, Lien D H, Wang Z L. ACS Nano, 2010, 4: 6285.

doi: 10.1021/nn1022878     URL    
[59]
Dai B Y, Biesold G M, Zhang M, Zou H Y, Ding Y, Wang Z L, Lin Z Q. Chem. Soc. Rev., 2021, 50: 13646.

doi: 10.1039/D1CS00506E     URL    
[60]
Zhu L P, Wang L F, Pan C F, Chen L F, Xue F, Chen B D, Yang L J, Su L, Wang Z L. ACS Nano, 2017, 11: 1894.

doi: 10.1021/acsnano.6b07960     URL    
[61]
Sun J, Hua Q, Zhou R, Li D, Guo W, Li X, Hu G, Shan C, Meng Q B, Dong L, Pan C F, Wang Z L. ACS Nano, 2019, 13: 4507.

doi: 10.1021/acsnano.9b00125     URL    
[62]
Liu T, Wang C, Hou J, Zhang C B, Chen H, He H, Wang N, Wu H, Cao G Z. Small, 2016, 12: 5146.

doi: 10.1002/smll.v12.37     URL    
[63]
Xu L, Xiong Y, Mei A Y, Hu Y, Rong Y G, Zhou Y H, Hu B, Han H W. Adv. Energy Mater., 2018, 8: 1702937.

doi: 10.1002/aenm.v8.13     URL    
[64]
Zhou Y Y, Chen Y N, Zhang Q, Zhou Y Tai M Q, Koumoto K, Lin H. J. Energy Chem., 2021, 59: 730.

doi: 10.1016/j.jechem.2020.12.020     URL    
[65]
Guo Q, Zhao Y, Tang Q, Duan J. Sol. RRL, 2022, 2200570.
[1]
Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H. Nature, 2022, 603: 73.

doi: 10.1038/s41586-021-04372-8    
[2]
Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z. Science, 2022, 376: 416.

doi: 10.1126/science.abm8566     URL    
[3]
Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J. Science, 2021, 373: 902.

doi: 10.1126/science.abi6323     URL    
[4]
Meng L, Li Y F. Prog. Chem., 2022, 34: 1247.

doi: 10.7536/PC220621    
(孟磊, 利用舫 化学进展, 2022, 34: 1247.).

doi: 10.7536/PC220621    
[5]
Peng H, Cai M, Ma S, Shi X, Liu X, Dai S. Prog. Chem., 2021, 33: 136.
(彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 化学进展, 2021, 33: 136.).
[6]
Yang Y, Ma S, Luo Y, Lin F, Zhu L, Guo X. Prog. Chem., 2021, 33: 779.
(杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 化学进展, 2021, 33: 779).
[7]
Zhang Q Y, Duan J L, Guo Q Y, Zhang J S, Zheng D D, Yi F X, Yang X Y, Duan Y Y, Tang Q W. Angew. Chem. Int. Ed., 2022, 61: e202116632.
[8]
Guo Q, Duan J, Zhang J, Zhang Q, Duan Y, Yang X, He B, Zhao Y, Tang Q. Adv. Mater., 2022, 34: 2202301.

doi: 10.1002/adma.v34.26     URL    
[9]
Duan J L, Wang Y D, Yang X Y, Tang Q W. Angew. Chem. Int. Ed., 2020, 59: 4391.

doi: 10.1002/anie.v59.11     URL    
[10]
Ballif C, Haug F J, Boccard M, Verlinden P J, Hahn G. Nat. Rev. Mater., 2022, 7: 597.

doi: 10.1038/s41578-022-00423-2    
[11]
Köhler M, Pomaska M, Procel P, Santbergen R, Zamchiy A, Macco B, Lambertz A, Duan W, Cao P, Klingebiel B, Li S, Eberst A, Luysberg M, Qiu K, Isabella O, Finger F, Kirchartz T, Rau U, Ding K. Nat. Energy, 2022, 6: 529.

doi: 10.1038/s41560-021-00806-9    
[12]
Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D L, Kanematsu M, Uzu H, Yamamoto K. Nat. Energy, 2017, 2: 17032.

doi: 10.1038/nenergy.2017.32     URL    
[13]
Eperon G E, Hörantner M T, Snaith H J. Nat. Rev. Chem., 2018, 1: 95.

doi: 10.1038/s41570-017-0095     URL    
[14]
Paul K K, Kim J-H, Lee Y H. Nat. Rev. Phys., 2021, 3: 178.

doi: 10.1038/s42254-020-00272-4    
[15]
Wang L, Wang Z, Wang H Y, Grinblat G, Huang Y L, Wang D, Ye X H, Li X B, Bao Q L, Wee A S, Maier S A, Chen Q D, Zhong M L, Qiu C W, Sun H.-B. Nat. Commun., 2017, 8: 13906.

doi: 10.1038/ncomms13906     pmid: 28054546
[16]
Tan J, Fang S, Zhang Z, Yin J, Li L, Wang X, Guo W. Nat. Commun., 2022, 13: 3643.

doi: 10.1038/s41467-022-31221-7    
[17]
Sun S, Tian Q, Mi H-Y, Li J, Jing X, Guo Z, Liu C, Shen C. Sci. China Mater., 2022, 65: 2479.

doi: 10.1007/s40843-021-2010-1    
[18]
Zhao F, Guo Y, Zhou X, Shi W, Yu G. Nat. Rev. Mater., 2020, 5: 388.

doi: 10.1038/s41578-020-0182-4    
[19]
Ding T P, Liu K, Li J, Xue G B, Chen Q, Huang L, Hu B, Zhou J. Adv. Funct. Mater., 2017, 27: 1700551.

doi: 10.1002/adfm.201700551     URL    
[20]
Yin J, Li X M, Zhang Z H, Zhou J X, Guo W L. Nat. Nanotechnol., 2014, 9: 378.

doi: 10.1038/nnano.2014.56    
[21]
Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L. Nat. Commun., 2019, 10: 1427.

doi: 10.1038/s41467-019-09461-x    
[22]
Wang Z L. Adv. Energy Mater., 2020, 10: 2000137.

doi: 10.1002/aenm.v10.17     URL    
[23]
Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang Z L. Nat. Commun., 2021, 12: 4686.

doi: 10.1038/s41467-021-25046-z    
[24]
Wang Z L, Wu W Z. Angew. Chem. Int. Ed., 2012, 51: 11700.

doi: 10.1002/anie.201201656     URL    
[25]
Wang X, Chen Y, Liu F, Pan Z. Nat. Commun., 2020, 11: 2040.

doi: 10.1038/s41467-020-16015-z    
[26]
Zhou Z, Wang X, Yi X, Ming H, Ma Z, Peng M. Chem. Eng. J., 2021, 421: 127820.

doi: 10.1016/j.cej.2020.127820     URL    
[27]
Liu J, Liang Y, Yan S, Chen D, Miao S, Wang W, Bi J. J. Mater. Chem. C, 2021, 9: 9692.

doi: 10.1039/D1TC01922H     URL    
[28]
Pan Z W, Lu Y Y, Liu F. Nat. Mater., 2012, 11: 58.

doi: 10.1038/nmat3173    
[29]
Dai B, Biesold G M, Zhang M, Zou H, Ding Y, Wang Z L, Lin Z. Chem. Soc. Rev., 2021, 50: 13646.

doi: 10.1039/D1CS00506E     URL    
[30]
Wang J, Xiao F, Zhao H. Renew. Sust. Energ. Rev., 2021, 151: 111522.

doi: 10.1016/j.rser.2021.111522     URL    
[31]
Yang Z, Zhou S, Zu J, Inman D. Joule, 2018, 2: 642.

doi: 10.1016/j.joule.2018.03.011     URL    
[32]
Wang Z L, Song J H. Science, 2006, 312: 242.

doi: 10.1126/science.1124005     URL    
[33]
Su L, Wang D, Wang S, Qin B, Wang Y, Qin Y, Jin Y, Chang C, Zhao L D. Science, 2022, 375: 1385.

doi: 10.1126/science.abn8997     URL    
[34]
Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D. Science, 2021, 373: 556.

doi: 10.1126/science.abi8668     URL    
[35]
Xiao Y, Zhao L D. Science, 2020, 367: 1196.

doi: 10.1126/science.aaz9426     pmid: 32165572
[36]
Hasan M A M, Zhang T, Wu H, Yang Y. Adv. Energy Mater., 2022, 2201383.
[37]
Zhao L L, Liu L Q, Yang X Y, Hong H X, Yang Q M, Wang J W, Tang Q W. J. Mater. Chem. A, 2020, 8: 7880.

doi: 10.1039/D0TA01698E     URL    
[38]
Tang Q W, Yang P Z. J. Mater. Chem. A, 2016, 4: 9730.

doi: 10.1039/C6TA03107B     URL    
[39]
Tang Q W, Wang X P, Yang P Z, He B L. Angew. Chem. Int. Ed., 2016, 55: 5243.

doi: 10.1002/anie.201602114     URL    
[40]
Zhang Y, Tang Q W, He B L,; Yang P Z. J. Mater. Chem. A, 2016, 4: 13235.

doi: 10.1039/C6TA05276B     URL    
[41]
Tang Q W, Zhang H N, He B L, Yang P Z. Nano Energy, 2016, 30: 818.

doi: 10.1016/j.nanoen.2016.09.014     URL    
[42]
Tang Q W, Duan Y Y, He B L, Chen H Y. Angew. Chem. Int. Ed., 2016, 55: 14412.

doi: 10.1002/anie.v55.46     URL    
[43]
Wang Y L, Duan J L, Zhao Y Y, Duan Y Y, Tang Q W. Nano Energy, 2017, 41: 293.

doi: 10.1016/j.nanoen.2017.09.007     URL    
[44]
He P, Chen W L, Li J P, Zhang H, Li Y W, Wang E B. Sci. Bull., 2020, 65: 35.

doi: 10.1016/j.scib.2019.09.026     URL    
[45]
Wang T, Ji T, Chen W L, Li X H, Guan W, Geng Y, Wang X L, Li Y G, Kang Z H. Nano Energy, 2020, 68: 104349.

doi: 10.1016/j.nanoen.2019.104349     URL    
[46]
Xue G, Xu Y, Ding T, Li J, Yin J, Fei W, Cao Y, Yu J, Yuan L, Gong L, Chen J, Deng S, Zhou J, Guo W. Nat. Nanotechnol., 2017, 12: 317.

doi: 10.1038/nnano.2016.300    
[47]
Duan J L, Hu T Y, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Int. Ed., 2018, 57: 5746.

doi: 10.1002/anie.201801837     URL    
[48]
Zheng L, Lin Z H, Cheng G, Wu W Z, Wen X N, Lee S M, Wang Z L. Nano Energy, 2014, 9: 291.

doi: 10.1016/j.nanoen.2014.07.024     URL    
[49]
Zheng L, Cheng G, Chen J, Lin L, Wang J, Liu Y S, Li H X, Wang Z L. Adv. Energy Mater., 2015, 5: 1501152.

doi: 10.1002/aenm.201501152     URL    
[50]
Liu X L, Cheng K, Cui P, Qi H, Qin H F, Gu G Q, Shang W Y, Wang S J, Cheng G, Du Z L. Nano Energy, 2019, 66: 104188.

doi: 10.1016/j.nanoen.2019.104188     URL    
[51]
Liu Y Q, Sun N, Liu J W, Wen Z, Sun X H, Lee S T, Sun B Q. ACS Nano, 2018, 12: 2893.

doi: 10.1021/acsnano.8b00416     URL    
[52]
Zhao L L, Duan J L, Liu L Q, Wang J W, Duan Y Y, Vaillant-Roca L, Yang X Y, Tang Q W. Nano Energy, 2021, 82: 105773.

doi: 10.1016/j.nanoen.2021.105773     URL    
[53]
Zheng Y, Liu T, Wu J, Xu T, Wang X, Han X, Cui H, Xu X F, Pan C F, Li X Y. Adv. Mater., 2022, 34: 2202238.

doi: 10.1002/adma.v34.28     URL    
[54]
Tang Q W, Wang J, He B L, Yang P Z. Nano Energy, 2017, 33: 266.

doi: 10.1016/j.nanoen.2017.01.047     URL    
[55]
Duan J L, Duan Y Y, Zhao Y Y, He B L, Tang Q W. Chem. Commun., 2017, 53: 10046.

doi: 10.1039/C7CC04645F     URL    
[56]
Chen C, Li H, Jin J, Chen X, Cheng Y, Zheng Y, Liu D, Xu L, Song H W, Dai Q L. Adv. Energy Mater., 2017, 7: 1700758.

doi: 10.1002/aenm.201700758     URL    
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[3] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[7] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[8] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[9] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[10] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[11] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[12] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[13] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[14] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[15] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.