English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 119-132 DOI: 10.7536/PC190603 前一篇   后一篇

• •

界面钝化策略:提高钙钛矿太阳能电池的稳定性

王蕾1,2, 周勤1,2, 黄禹琼1,2, 张宝1,**(), 冯亚青1,2   

  1. 1. 天津大学化工学院 天津 300350
    2. 天津化学化工创新协同中心 天津 300072
  • 收稿日期:2019-06-04 出版日期:2020-01-15 发布日期:2019-10-22
  • 通讯作者: 张宝
  • 基金资助:
    国家重点研发计划(2016YFE0114900); 国家自然科学基金项目资助(21761132007)

Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells

Lei Wang1,2, Qin Zhou1,2, Yuqiong Huang1,2, Bao Zhang1,**(), Yaqing Feng1,2   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received:2019-06-04 Online:2020-01-15 Published:2019-10-22
  • Contact: Bao Zhang
  • About author:
  • Supported by:
    National Key R&D Program of China(2016YFE0114900); National Natural Science Foundation of China(21761132007)

近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从3.8%迅速发展到目前25.2%的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。

In recent years, the emerging organic and inorganic hybrid perovskite solar cells have made rapid progress. In just ten years, its photoelectric conversion efficiency has rapidly developed from 3.8% to the current certified efficiency of 25.2%, which is regarded as one of the most potential solar cells. Although perovskite solar cells have high photoelectric conversion efficiency comparable to polysilicon thin film cells, the long-term stability of the cells remains a major challenge hindering their commercialization. There are many defects on the surface and grain boundary of perovskite. Interface passivation is an important and effective strategy to improve the stability of perovskite solar cells. Two-dimensional perovskite materials are organic amine and inorganic layer alternate layered perovskite, with bulky organic ammonium cations. Compared with the traditional three-dimensional perovskite materials, the stability for the environment is good, with the flexible and adjustable structure. The 3D perovskite’s surface is modified by a two-dimensional perovskite to passivate defects, ensuring the stability and at the same time improving the efficiency of perovskite solar cells. In addition, suitable passivation agent molecules can also passivate defects effectively. This paper reviews the unstable factors of perovskite solar cells, summarizes the research progress in interface passivation of perovskite solar cell, points out the great potential of two-dimensional perovskite materials’ development and the principle of finding suitable passivation agent molecules, which is expected to provide useful guidance for obtaining high-performance perovskite solar cells and realizing commercialization.

()
图1 (a) 三维混合钙钛矿ABX3结构图,显示角共享[BX6]4-八面体(A是有机阳离子,B是金属阳离子,X是卤化物);(b) 在潮湿、紫外光或热作用下,3D钙钛矿可分解为前体材料或0D水化相;(c) 显示了在三维钙钛矿中,O2通过晶粒渗透而开始的降解过程[23]
Fig. 1 (a) Illustration of the 3D hybrid perovskite structure ABX3, showing the corner-sharing [BX6]4- octahedra (A is an organic cation, B is a metal cation and X is a halide); (b) Upon exposure to moisture, UV light or heat, 3D perovskites decompose into either the precursor materials or a 0D hydrated phase; (c) Illustration showing the degradation processes initiated by infiltration of O2 through the grains in a 3D perovskite[23] (Reproduced with permission from ref 23)
图2 二维层状有机-无机杂化钙钛矿的典型结构为n=1的双(a)和单(b)夹层有机分子层[52]
Fig. 2 Typical structures of the 2D layered hybrid organic-inorganic perovskite for n=1 with double (a) and single (b) intercalated organic molecule layer[52] (Reproduced with permission from ref 52)
图3 二维钙钛矿被用作掺杂剂,钝化三维钙钛矿的晶界[24]
Fig. 3 Illustration showing that 2D perovskites is used as dopant to passivate the crystal grain boundaries of 3D perovskites[24] (Reproduced with permission from ref 24)
图4 (a) BA处理钙钛矿薄膜形成2D/3D堆积结构,(b,c) BA和BAI处理钙钛矿薄膜表面及晶界处2D/3D分子连接示意图,SEM图像:(d) MAPbI3膜,(e) BA处理的MAPbI3膜,(f) BAI处理的MAPbI3膜[57]
Fig. 4 Schematic figure of (a) the perovskite film treated by BA to form a 2D/3D stacking structure and (b,c) 2D/3D molecular junctions on the surface and at grain boundaries of 3D perovskite films induced by BA and BAI treatments, respectively; SEM images of (d) MAPbI3 films, (e) BA-treated MAPbI3 films, and (f) BAI-treated MAPbI3 films[57] (Reproduced with permission from ref 57)
图5 (a) FAI和iBAI钝化处理方法示意图;(b)稳定性测试:在75% RH条件下38 d的PCEs监控;(c) 各种钝化组合物的PCE、VOC、JSC、FF分布[59]
Fig. 5 (a) Schematic of the MP passivation treatment method with FAI and iBAI; (b) Stability test: PCEs monitored in 75% RH condition over a period of 38 d; (c) Distribution of PCE, VOC, JSC, and FF of devices with various passivation compositions[59] (Reproduced with permission from ref 59)
图6 钙钛矿表面示意图(a) PEAI改性,其中PEA+离子似乎垂直竖立;(b) ODAI改性,ODA2+离子似乎水平放置(颜色:原子,红色:I,灰色:铅,蓝色:H,黄色:C,棕色:N);(c)在黑暗条件下,设备在湿度约为20% ~ 40%的环境中,其性能是存储时间的函数,插图显示了对照(左)和ODAI修改的设备(右)的最终照片[60]
Fig. 6 Schematic of the surface of perovskite with (a) PEAI modification wherein the PEA+ ion seemed to stand vertically and (b) ODAI modification wherein the ODA2+ ion seemed to lie horizontally (color: atom, red: I, gray: Pb, blue: H, yellow: C and brown: N); (c) Device performance as a function of storage time in an ambient environment with a humidity of about 20%~40% under the dark condition, and the inset shows the final photographs of control (left) and ODAI-modified (right) devices[60] (Reproduced with permission from ref 60)
图7 (a)具有吸湿性分子的分子结构,(b)具有路易斯碱基官能团的分子结构[62,64]
Fig. 7 (a) Molecular structure of the molecules with hygroscopic molecules, (b) Molecular structure of the molecules with Lewis base functional groups[62,64] (Figure a is reproduced with permission from ref 62, Figure b is reproduced with permission from ref 64)
图8 未经修饰的FAPbI3、A-FAPbI3、BA-FAPbI3和PA-FAPbI3膜在(50±5)% RH空气下暴露不同时间(新鲜、3天、4个月)的图像[65]
Fig. 8 Images of unmodified FAPbI3, A-FAPbI3, BA-FAPbI3, and PA-FAPbI3 films after different durations (fresh, 3 d, 4 months) of exposure under (50 ± 5)% RH air[65] (Reproduced with permission from ref 65)
图9 在黑暗潮湿的环境中,使用或不使用OA表面钝化的老化MAPbI3薄膜的紫外-可见吸收光谱;(a) MAPbI3膜老化前后1周的吸收光谱;(b) 使用OA的MAPbI3膜在老化前后1周和4周的吸收光谱,插图显示相应样品的图像[68]
Fig. 9 UV-vis absorption spectra of aged MAPbI3 films with and without surface passivation with OA in a dark and humid environment; (a) The absorption spectra of MAPbI3 before and after 1 week of aging; (b) The absorption spectra of MAPbI3 film with OA before and after 1 and 4 weeks of aging, Insets show photographic images of the corresponding samples[68] (Reproduced with permission from ref 68)
图10 平面异质结钙钛矿太阳能电池器件的结构[69]
Fig. 10 The structure of planar heterojunction devices[69] (Reproduced with permission from ref 69)
图11 BAA掺入引起的缺陷钝化和抗水性示意图[70]
Fig. 11 Schematic illustration of defect passivation and water repellence induced by BAA incorporation[70] (Reproduced with permission from ref 70)
图12 (a) MAPbI3晶格末端处AVA钝化的示意图,MAPbI3表面缺陷位点经AVA钝化后稳定性增强的示意图;(b)在没有AVA的情况下,氧可以进入晶界的碘空位,从而导致在光辐射下超氧化物介导的光降解;(c)在有AVA存在的情况下,AVA与这些碘空位结合,抑制这种降解[71]
Fig. 12 (a) Schematic representation of AVA passivation at lattice termination of MAPbI3, schematic representation of enhanced stability resulting from AVA passivation of surface defect sites of MAPbI3: in the absence of AVA (b), oxygen can access iodide vacancies at grain boundaries, resulting under irradiation in superoxide mediated photodegradation; in the presence of AVA (c), AVA binds to these iodide vacancies, inhibiting this degradation[71] (Reproduced with permission from ref 71)
图13 钙钛矿潜在的表面缺陷部位[72]
Fig. 13 The potential surface defect sites in perovskite[72] (Reproduced with permission from ref 72)
图14 (a)高湿度老化前后原始和钝化钙钛矿薄膜的照片;(b)新制备和老化钙钛矿薄膜的XRD图谱;(c)在室温相对湿度为60%~70%的环境中贮存的参考装置和2-MP钝化装置的稳定性试验[77]
Fig. 14 (a) Photographs of the pristine and passivated perovskite films before and after high humidity aging; (b) XRD patterns of freshly prepared and aged perovskite films. (c) Stability test of the reference and 2-MP passivated devices stored in ambient air with a relative humidity of 60%~70% at room temperature[77] (Reproduced with permission from ref 77)
表1 PSCs缺陷钝化概述:钝化剂、结构、钙钛矿材料、钝化功能基团、钝化类型(二维钝化)/靶缺陷(分子钝化)、无(C)和有(P)钝化的光伏参数
Table 1 Summary of defect passivation for PSCs: passivator, structure, perovskite materials, passivation functional group, passivation type (two-dimensional passivation)/targeted defect (molecular passivation) and photovoltaic parameters without (C) and with (P) passivation (A: average; PVK: perovskite)
Passivator Structure Perovskite Passivation
functional
group
Passivation
type/
Targeted
defects
Jsc[mA/
cm2]
(C/P)
Voc[V]
(C/P)
FF
(C/P)
PCE
[%]
(C/P)
ref
PEAI MAPbI3 Ammonium 2D 23.58/22.69 1.104/1.146 0.7685/0.7632 20.0/19.84 56
BA/BAI MAPbI3 Amine/Ammonium 2D 22.20/22.49、22.59 1.08/1.11, 1.09 0.74/0.78, 0.77 17.75/19.56、18.85 57
ZnPc MAPbI3 Ammonium 2D 22.93/23.23 1.08/1.09 0.76/0.77 18.83/19.56 58
ODAI FAPbI3 Ammonium 2D 24.81/24.90 1.04/1.13 0.78/0.75 20.23/21.18 60
FPEAI Cs0.1(FA0.83
MA0.17)0.9
Pb(I0.83Br0.17)3
Ammonium 2D 22.04/22.80 1.090/1.126 0.80/0.80 19.22/20.54 61
BA FAPbI3 Amine Undercoor-
dinated Pb2+ or the iodide ions
22.7/23.6 1.01/1.12 0.70/0.73 15.7/19.2 65
PVP MAPbI3 N donor
(pyridine
group)
Undercoordinated Pb2+ 20.1/22.0 0.90/1.05 0.64/0.66 11.6/15.1 66
PEO MAPbI3 O donor Undercoordinated Pb2+ 19.823/20.850 1.055/1.105 0.750/0.754 15.552/17.194 67
OA MAPbI3 Carboxyl group Surface Pb2+
and/or CH3NH3+
24.4/23.5 0.86/0.93 36.0/41.7 7.62/9.11 68
Passivator Structure Perovskite Passivation
functional
group
Passivation
type/
Targeted
defects
Jsc[mA/
cm2]
(C/P)
Voc[V]
(C/P)
FF
(C/P)
PCE
[%]
(C/P)
ref
PCDTBT CH3NH3 PbIxCl3-x S, N donor Undercoordinated Pb2+ 20.87/21.71 0.91/0.94 0.69/0.77 13.19/15.76 69
BAA Cs/FA/MA PVK
MAPbI3
Amine Undercoordinated Pb2+ 23.4/23.4
22.0/22.5
1.06/1.16
1.08/1.18
0.684/0.794
0.772/0.817
17.0/21.5
18.3/21.7
70
PBDB-T (CsPbI3)0.04
(FAPbI3)0.82
(MAPbBr3)0.14
O donor Undercoordinated Pb2+ 21.73/22.39 1.075/1.113 0.740/0.778 17.28/19.38 72
AQ310 (FAPbI3)0.85
(MAPbBr3)0.15
Carboxyl group Undercoordinated Pb2+ 21.76/21.80 1.11/1.15 0.780/0.784 18.84(17.98 A)/19.66(19.43 A) 73
LL MAPbI3 Bipolarity Anionic defects 21.35/24.09 1.00/1.02 0.728/0.741 15.55/18.20 74
FAL Cs0.05(MA0.17
FA0.83)0.95
Pb(I0.83Br0.17)3
Amine The sites of
MA/FA vacancies
22.56/23.33 1.02/1.33 0.743/0.777 17.08/20.48 75
2-MP MAPbI3 N donor (pyridine
ring) and S donor
Undercoordinated Pb2+ 22.56/22.61 1.09/1.16 0.7464/0.7744 18.35/20.28 77
HS MAPbI3 the-COO-/-SO3- anionic and Na+
cationic groups
Undersaturated Pb2+ and I- in
MAPbI3 and Ti4+ in TiO2
21.29/23.34 1.090/1.114 0.7407/0.7731 17.20/20.10 78
[1]
Chen S, Shi G. Adv. Mater., 2017,29:1605448.
[2]
Yan J L, Qiu W M, Wu G, Heremans P, Chen H Z . J. Mater. Chem. A, 2018,6:11063.
[3]
Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C . Science, 2013,342:344. https://www.ncbi.nlm.nih.gov/pubmed/24136965

doi: 10.1126/science.1243167     URL     pmid: 24136965
[4]
Lin Q Q, Armin A, Burn P L, Meredith P . Nature Photonics, 2015,9:687.
[5]
Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E. Nature Photonics, 2014,8:250.
[6]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015,15:3692. https://www.ncbi.nlm.nih.gov/pubmed/25633588

doi: 10.1021/nl5048779     URL     pmid: 25633588
[7]
Kojima A, Teshima K, Shirai Y, Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

doi: 10.1021/ja809598r     URL     pmid: 19366264
[8]
Zimmermann I, Aghazada S, Nazeeruddin M K. Angew. Chem. Int. Ed., 2019,58:1072. https://www.ncbi.nlm.nih.gov/pubmed/30462878

doi: 10.1002/anie.201811497     URL     pmid: 30462878
[9]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J . Science, 2012,338:643. https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604     URL     pmid: 23042296
[10]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I . Science, 2017,356:1376. https://www.ncbi.nlm.nih.gov/pubmed/28663498

doi: 10.1126/science.aan2301     URL     pmid: 28663498
[11]
Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Gratzel M, Seok S I . J. Am. Chem. Soc., 2013,135:19087. https://www.ncbi.nlm.nih.gov/pubmed/24313292

doi: 10.1021/ja410659k     URL     pmid: 24313292
[12]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J . Nature Energy, 2018,3:682.
[13]
NREL Efficiency Chart Vol. 2019. [2019-05-30]https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html
[14]
Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M . Science, 2015,347:519. https://www.ncbi.nlm.nih.gov/pubmed/25635092

doi: 10.1126/science.aaa2725     URL     pmid: 25635092
[15]
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J . Science, 2015,347:967. https://www.ncbi.nlm.nih.gov/pubmed/25636799

doi: 10.1126/science.aaa5760     URL     pmid: 25636799
[16]
Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ. Sci., 2016,9:1752.
[17]
Zong Y, Zhou Y, Zhang Y, Li Z, Zhang L, Ju M, Chen M, Pang S, Zeng X C, Padture N P . Chem., 2018,4:1404.
[18]
Deng W, Liang X, Kubiak P S, Cameron P J. Adv. Energy Mater., 2018,8:1701544.
[19]
Li W, Zhang C, Ma Y, Liu C, Fan J, Mai Y, Schropp R E I . Energy Environ. Sci., 2018,11:286. http://xlink.rsc.org/?DOI=C7EE03113K

doi: 10.1039/C7EE03113K     URL    
[20]
张佳维(Zhang J W) . 山东化工(Shandong Chemical Industry), 2018,47:66.
[21]
Correa-Baena J P, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A . Science, 2017,358:739. https://www.ncbi.nlm.nih.gov/pubmed/29123060

doi: 10.1126/science.aam6323     URL     pmid: 29123060
[22]
Kieslich G, Sun S J, Cheetham A K. Chem. Sci., 2014,5:4712.
[23]
Grancini G, Nazeeruddin M.K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019. 4:4.
[24]
a) Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G . Adv. Energy Mater., 2015. 5:1500477;

pmid: 27909338
b) Dualeh A, Gao P, Seok S I, Nazeeruddin M K, Grätzel M. Chem. Mater., 2014. 26:6160; https://www.ncbi.nlm.nih.gov/pubmed/27109865

doi: 10.1021/acs.jpcb.6b02165     URL     pmid: 27909338
c) Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M C, Glunz S W, Ko Y, Jun Y, Kang Y, Lee H S, Kim D. Sci. Rep., 2016. 6:38150; https://www.ncbi.nlm.nih.gov/pubmed/27909338

doi: 10.1038/srep38150     URL     pmid: 27909338
d) Niu G, Guo X, Wang L. J. Mater. Chem. A., 2015. 3:8970.

pmid: 27909338
[25]
a) Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L, Cheng Y B . J. Mater. Chem. A, 2015. 3:8139;

pmid: 32260930
b) Leguy A M A, Hu Y, Campoy-Quiles M, Alonso M I, Weber O J, Azarhoosh P, van Schilfgaarde M, Weller M T, Bein T, Nelson J, Docampo P, Barnes P R F. Chem. Mater., 2015. 27:3397; https://www.ncbi.nlm.nih.gov/pubmed/32260930

doi: 10.1039/c3tb20386g     URL     pmid: 32260930
c) Zhang L, Sit P H L. J. Phys. Chem. C, 2015,119:22370.

pmid: 32260930
[26]
Soufiani A M, Hameiri Z, Meyer S, Lim S, Tayebjee M J Y, Yun J S, Ho-Baillie A, Conibeer G J, Spiccia L, Green M A . Adv. Energy Mater., 2017,7:1602111.
[27]
Wang D, Wright M, Elumalai N K, Uddin A. Sol. Energy Mater. Sol. Cells, 2016,147:255.
[28]
Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J. Energy Environ. Sci., 2016,9:323.
[29]
Aristidou N, Eames C, Sanchez-Molina I, Bu X N, Kosco J, Islam M S, Haque S A . Nature Communications, 2017,8:15218. https://www.ncbi.nlm.nih.gov/pubmed/28492235

doi: 10.1038/ncomms15218     URL     pmid: 28492235
[30]
Qiu W M, Ray A, Jaysankar M, Merckx T, Bastos J P, Cheyns D, Gehlhaar R, Poortmans J, Heremans P . Adv. Funct. Mater., 2017,27:1700920.
[31]
Saliba M, Matsui T, Seo J Y, Domanski K Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M . Energy Environ. Sci., 2016,9:1989. https://www.ncbi.nlm.nih.gov/pubmed/27478500

doi: 10.1039/c5ee03874j     URL     pmid: 27478500
[32]
Li F, Wang H, Kufer D, Liang L L, Yu W L, Alarousu E, Ma C, Li Y Y, Liu Z X, Liu C X, Wei N N, Wang F, Chen L, Mohammed O F, Fratalocchi A, Liu X G, Konstantatos G, Wu T. Adv. Mater., 2017,29:1602432.
[33]
Chen H L, Fu W F, Huang C Y, Zhang Z Q, Li S X, Ding F Z, Shi M M, Li C Z, Jen A K Y, Chen H Z . Adv. Energy Mater., 2017,7:1700012.
[34]
Dong Q, Liu F Z, Wong M K, Tam H W, Djurisic A B, Ng A N, Surya C, Chan W K, Ng A M C . ChemSusChem, 2016,9:2597. https://www.ncbi.nlm.nih.gov/pubmed/27504719

doi: 10.1002/cssc.201600868     URL     pmid: 27504719
[35]
Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T . Nature Communications, 2017,8:13938. https://www.ncbi.nlm.nih.gov/pubmed/28067308

doi: 10.1038/ncomms13938     URL     pmid: 28067308
[36]
Koushik D, Verhees W J H, Kuang Y H, Veenstra S, Zhang D, Verheijen M A, Creatore M, Schropp R E I . Energy Environ. Sci., 2016,10:91.
[37]
Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J . J. Mater. Chem. A, 2017,5:5486.
[38]
Gao P, Cho K T, Abate A, Grancini G, Reddy P Y, Srivasu M, Adachi M, Suzuki A, Tsuchimoto K, Gratzel M, Nazeeruddin M K. Phys. Chem. Chem. Phys., 2016,18:27083. https://www.ncbi.nlm.nih.gov/pubmed/27400647

doi: 10.1039/c6cp03396b     URL     pmid: 27400647
[39]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park H . Nano Lett., 2017,17:2028. https://www.ncbi.nlm.nih.gov/pubmed/28170276

doi: 10.1021/acs.nanolett.7b00050     URL     pmid: 28170276
[40]
Du M H . J. Mater. Chem. A, 2014,2:9091.
[41]
Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M . Science, 2017,358:768. https://www.ncbi.nlm.nih.gov/pubmed/28971968

doi: 10.1126/science.aam5655     URL     pmid: 28971968
[42]
Zhang J J, Zhang L Y, Li X H, Zhu X Y, Yu J G, Fan K. ACS Sustainable Chem. Eng., 2019,7:3487. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b05734

doi: 10.1021/acssuschemeng.8b05734     URL    
[43]
Gao P, Yusoff A B, Nazeeruddin M K . Nature Communications, 2018. 9:5028. https://www.ncbi.nlm.nih.gov/pubmed/30487520

doi: 10.1038/s41467-018-07382-9     URL     pmid: 30487520
[44]
Yang Y, Yang M, Moore D T, Yan Y, Miller E M, Zhu K, Beard M C . Nat. Energy, 2017,2:16207.
[45]
Shao Y, Xiao Z, Bi C, Yuan Y, Huang J . Nat. Commun., 2014,5:5784. https://www.ncbi.nlm.nih.gov/pubmed/25503258

doi: 10.1038/ncomms6784     URL     pmid: 25503258
[46]
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H . Nat. Commun., 2015,6:7081. https://www.ncbi.nlm.nih.gov/pubmed/25953105

doi: 10.1038/ncomms8081     URL     pmid: 25953105
[47]
Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Energy Environ. Sci., 2014,7:2359.
[48]
De Marco N, Zhou H, Chen Q, Sun P, Liu Z, Meng L, Yao E P, Liu Y, Schiffer A, Yang Y . Nano Lett., 2016,16:1009. https://www.ncbi.nlm.nih.gov/pubmed/26790037

doi: 10.1021/acs.nanolett.5b04060     URL     pmid: 26790037
[49]
Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y . Nano Lett., 2014,14:4158. https://www.ncbi.nlm.nih.gov/pubmed/24960309

doi: 10.1021/nl501838y     URL     pmid: 24960309
[50]
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Gratzel M . Nat. Chem., 2015,7:703. https://www.ncbi.nlm.nih.gov/pubmed/26291941

doi: 10.1038/nchem.2324     URL     pmid: 26291941
[51]
Wang Q, Chen B, Liu Y, Deng Y, Bai Y, Dong Q, Huang J. Energy Environ. Sci., 2017,10:516.
[52]
Ahmad S, Guo X. Chinese Chemical Letters, 2018,29:657.
[53]
Mao L L, Tsai H, Nie W Y, Ma L, Im J, Stoumpos C C, Malliakas C D, Hao F, Wasielewski M R, Mohite A D, Kanatzidis M G. Chem. Mater., 2016,28:7781.
[54]
Abdel-Aal S K, Abdel-Rahman A S . J. Cryst. Growth, 2017,457:282.
[55]
Mercier N, Riou A . Chem. Commun., 2004,33:844.
[56]
Chen J, Lee D, Park N G. ACS Appl. Mater. Interfaces, 2017,9:36338. https://www.ncbi.nlm.nih.gov/pubmed/28952714

doi: 10.1021/acsami.7b07595     URL     pmid: 28952714
[57]
Lin Y, Bai Y, Fang Y J, Chen Z L, Yang S, Zheng X P, Tang S, Liu Y, Zhao J J, Huang J S . J. Phys. Chem. Lett., 2018,9:654. https://www.ncbi.nlm.nih.gov/pubmed/29350044

doi: 10.1021/acs.jpclett.7b02679     URL     pmid: 29350044
[58]
Li C P, Lv X D, Cao J, Tang Y . Chin. J. Chem., 2019,37:30.
[59]
Cho Y Y, Soufiani A M, Yun J S, Kim J C, Lee D S, Seidel J, Deng X F, Green M A, Huang S J, Ho-Baillie A W Y . Adv. Energy Mater., 2018,8:1703392.
[60]
Luo W, Wu C C, Wang D, Zhang Y Q, Zhang Z H, Qi X, Zhu N, Guo X, Qu B, Xiao L X, Chen Z J. ACS Appl. Mater. Interfaces, 2019. 11:9149. https://www.ncbi.nlm.nih.gov/pubmed/30715841

doi: 10.1021/acsami.8b22040     URL     pmid: 30715841
[61]
Zhou Q, Liang L S, Hu J J, Cao B B, Yang L K, Wu T J, Li X, Zhang B, Gao P. Adv. Energy Mater., 2019,9:1802595.
[62]
Zhang H, Nazeeruddin M K, Choy W C H . Adv. Mater., 2019,31:1805702.
[63]
Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G . Nat. Energy, 2016,1:15016.
[64]
Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z. Adv. Mater., 2018,30:1706576.
[65]
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Adv. Mater., 2016,28:9986. https://www.ncbi.nlm.nih.gov/pubmed/27677653

doi: 10.1002/adma.201603062     URL     pmid: 27677653
[66]
Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T . ChemSusChem, 2017,10:2473. https://www.ncbi.nlm.nih.gov/pubmed/28371487

doi: 10.1002/cssc.201700271     URL     pmid: 28371487
[67]
Kim M, Motti S G, Sorrentino R, Petrozza A. Energy Envir. Sci., 2018,11:2609.
[68]
Abdelmageed G, Sully H R, Naghadeh S B Ali A E H, Carter S A, Zhang J Z . ACS Appl. Energy Mater., 2018,1:387. https://pubs.acs.org/doi/10.1021/acsaem.7b00069

doi: 10.1021/acsaem.7b00069     URL    
[69]
Zhang C C, Li M, Wang Z K, Jiang Y R, Liu H R, Yang Y G, Gao X Y, Ma H . Mater. Chem. A, 2017,5:2572. http://xlink.rsc.org/?DOI=C6TA08970D

doi: 10.1039/C6TA08970D     URL    
[70]
Wu W Q, Yang Z B, Rudd P N, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J S. Sci. Adv., 2019. 5:eaav8925. https://www.ncbi.nlm.nih.gov/pubmed/30873433

doi: 10.1126/sciadv.aav8925     URL     pmid: 30873433
[71]
Lin C T, De Rossi F, Kim J, Baker J, Ngiam J, Xu B, Pont S, Aristidou N, Haque S A, Watson T, McLachlan M A, Durrant J R. J. Mater. Chem. A, 2019,7:3006.
[72]
Qin P L, Yang G, Ren Z W, Cheung S H, So S K, Chen L, Hao J H, Hou J H, Li G. Adv. Mater., 2018,30:1706126.
[73]
Li X, Chen C C, Cai M L, Hua X, Xie F X, Liu X, Hua J L, Long Y T, Tian H, Han L Y. Adv. Energy Mater., 2018,8:1800715.
[74]
Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X . Phys. Status Solidi (RRL), 2019,13:1800505.
[75]
Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y . Small, 2018,14:1803350.
[76]
Dequilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S. ACS Energy Lett., 2016,1:438. https://pubs.acs.org/doi/10.1021/acsenergylett.6b00236

doi: 10.1021/acsenergylett.6b00236     URL    
[77]
Zhang H, Wu Y Z, Shen C, Li E P, Yan C X, Zhang W W, Tian H, Han L Y, Zhu W H. Adv. Energy Mater., 2019: 1803573.
[78]
You S, Wang H, Bi S Q, Zhou J Y, Qin L, Qiu X H, Zhao Z Q, Xu Y, Zhang Y, Shi X H, Zhou H Q, Tang Z Y. Adv. Mater., 2018,30:1706924.
[79]
Ono L K, Qi Y B . J. Phys. Chem. Lett., 2016,7:4764. https://www.ncbi.nlm.nih.gov/pubmed/27791377

doi: 10.1021/acs.jpclett.6b01951     URL     pmid: 27791377
[80]
She L M, Liu M Z, Zhong D Y . ACS Nano, 2015,10:1126. https://www.ncbi.nlm.nih.gov/pubmed/26643387

doi: 10.1021/acsnano.5b06420     URL     pmid: 26643387
[81]
Ohmann R, Ono L K, Kim H S, Lin H P, Lee M V, Li Y Y, Park N G, Qi Y B . J. Am. Chem. Soc., 2015,137:16049. https://www.ncbi.nlm.nih.gov/pubmed/26639900

doi: 10.1021/jacs.5b08227     URL     pmid: 26639900
[82]
Baumann A, Vath S, Rieder P, Heiber M C, Tvingstedt K, Dyakonov V . J. Phys. Chem. Lett., 2015,6, 2350. https://www.ncbi.nlm.nih.gov/pubmed/26266616

doi: 10.1021/acs.jpclett.5b00953     URL     pmid: 26266616
[83]
Heo S, Seo G, Lee Y, Lee D, Seol M, Lee J, Park J B, Kim K, Yun D J, Kim Y S, Shin J K, Ahn T K, Nazeeruddin M K. Energy Environ. Sci., 2017,10:1128.
[84]
Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S . Chem. Soc. Rev., 2019,48:3842. https://www.ncbi.nlm.nih.gov/pubmed/31187791

doi: 10.1039/c8cs00853a     URL     pmid: 31187791
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[12] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[15] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.