English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2573-2587 DOI: 10.7536/PC220602 前一篇   后一篇

• 综述 •

基于表面增强拉曼光谱技术的心肌生物标志物检测

彭倩, 张晶晶, 房新月, 倪杰, 宋春元*()   

  1. 南京邮电大学材料科学与工程学院 南京 210023
  • 收稿日期:2022-06-08 修回日期:2022-08-23 出版日期:2022-09-30 发布日期:2022-09-19
  • 通讯作者: 宋春元
  • 作者简介:

    宋春元 纳米光电材料、生物光电子学、纳米生物传感器等。主要涉及贵金属及磁性纳米材料的可控制备、表面功能化修饰,并基于纳米颗粒独特的光、电、磁等性能开展表面等离子共振及表面增强拉曼散射(SERS)相关的机理、SERS生化传感器构建及应用等研究。

  • 基金资助:
    国家自然科学基金项目(61871236)

Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers

Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song()   

  1. Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications,Nanjing 210023, China
  • Received:2022-06-08 Revised:2022-08-23 Online:2022-09-30 Published:2022-09-19
  • Contact: Chunyuan Song
  • Supported by:
    National Natural Science Foundation of China(61871236)

心血管疾病(CVD)是全球最主要的死亡原因,急性心肌梗死(AMI)是心血管疾病致死的主要病因,安全快速地诊断AMI对于降低患者的死亡率至关重要。因常用的检测方法如心电图(ECG)缺乏足够的敏感性,寻找并针对AMI生物标志物开展高灵敏检测已成为早期检测AMI重要手段。心肌肌钙蛋白I(cTnI)、肌酸激酶同工酶(CK-MB)和肌红蛋白(Myo)是目前公认的检测AMI的重要心肌生物标志物。在过去的几十年里,许多生物传感器被开发出来用于检测心肌生物标志物,其中基于表面增强拉曼光谱(SERS)的心肌生物标志物检测技术迅速发展,并表现出独特的技术优势和广阔的应用前景。本文首先介绍了多种心肌生物标志物及其与AMI的关联,在此基础上概述主要的心肌生物标志物检测方法的原理、优势及局限性,重点介绍近年来新兴的SERS技术及其在心肌生物标志物传感方面的最新研究进展,并对该技术在AMI诊断方面的应用前景以及有待突破的瓶颈进行了讨论和展望。

Cardiovascular disease (CVD) is the leading cause of death worldwide, while acute myocardial infarction (AMI) is the main cause of cardiovascular death. Early and rapid diagnosis of AMI is essential to reduce mortality in patients with CVD. Due to the lack of sufficient sensitivity of common detection methods such as electrocardiogram (ECG), screening for AMI-related biomarkers and conducting sensitive detection has become an important tool for early and accurate detection of AMI. Currently, cardiac troponin I (cTnI), creatine kinase-MB isoenzymes (CK-MB) and myoglobin (Myo) are identified as important biomarkers of myocardial injury. In the past few decades, many biosensors have been developed to detect biomarkers of myocardial injury, among which surface-enhanced Raman spectroscopy (SERS)-based detections have developed rapidly and showed unique advantages and broad application prospects. In this paper, several biomarkers of myocardial injury and their associations with AMI are introduced firstly, and the principles, advantages and limitations of the conventional detection methods for AMI-related biomarkers detection are outlined. Based on this, the research progress of SERS on detection of biomarkers of myocardial injury in recent years is reviewed, and the application and prospect of SERS in AMI diagnosis and the problems and direction of further study are discussed.

Contents

1 Introduction

2 Cardiac biomarkers

2.1 Cardiac troponin

2.2 Creatine kinase-MB isoenzymes

2.3 Myoglobin

3 Conventional detection methods

3.1 ELISA

3.2 Electrochemical immunoassay

3.3 Chemiluminescence immunoassay

3.4 Fluorescence immunoassay

4 SERS detection of biomarkers of myocardial injury

4.1 SERS and SERS-based biosensing

4.2 SERS detection of myocardial injury-related biomarkers

5 Conclusion and outlook

()
图1 心肌梗塞的诊断示意图
Fig. 1 Schematic of the diagnostics on myocardial infarction.
图2 检测原理图:(A)酶联免疫吸附测定,(B)电化学免疫测定,(C)化学发光免疫测定,(D)荧光免疫测定
Fig. 2 Schematic diagrams of ELISA (A), electrochemical immunoassay (B), chemiluminescence immunoassay (C), and fluorescence immunoassay (D)
图3 SERS传感原理图:(A)基于免疫识别机制的SERS检测,(B)基于适配体识别机制的SERS检测
Fig. 3 Schematic diagrams of sensing based on the mechanism of immune recognition (A) and aptamer recognition (B)
图4 (A):基于GO/AuNPs复合物SERS探针的cTnI检测原理图[116];(B):基于间隙增强型SERS探针的LFIA原理图[117]
Fig. 4 (A): Detection of cTnI by GO/AuNPs SERS probe[116]. Copyright 2018, The Royal Society of Chemistry; (B): LFIA by gap-enhanced SERS probe[117]. Copyright 2018, Springer
图5 结合SERS免疫探针和免疫磁珠基于PDMS富集装置测定cTnI原理图[119]
Fig. 5 Detection of cTnI by SERS immunoprobe and immunomagnetic beads on a PDMS device[119]. Copyright 2017, American Chemical Society.
图6 (A):基于适配体识别的“Au nanoplate-cTnI-SERS适配体探针”三明治夹心结构检测原理图[120];(B):适配体标记的Fe3O4@Ag@Au定量SERS检测cTnI原理图[121]
Fig. 6 (A) : "Au nanoplate-cTnI-SERS aptamer probe" sandwich structure detection of cTnI based on aptamer recognition[120]; Copyright 2020, Multidisciplinary Digital Publishing Institute; (B): Quantitative SERS detection of cTnI by Fe3O4@Ag@Au via aptamer recognition[121]. Copyright 2022, Springer
图7 基于海胆状金纳米颗粒SERS免疫探针和μPAD免疫检测基底的CK-MB SERS检测示意图
Fig.7 SERS detection of CK-MB by sea urchin-like gold nanoparticles SERS immunoprobe and μPAD immune-substrate
图8 Ag@SiO2 SERS探针检测Mb原理图[125]
Fig. 8 Ag@SiO2 SERS probes for detecting Mb[125]. Copyright 2012, The Royal Society of Chemistry
图9 基于适配体结合二硫化钨纳米金(AuNP-WS2)的SERS平台用于检测Myo原理图[127]
Fig. 9 Aptamer-labeled AuNP-WS2 as SERS sensor for detection of Myo[127]. Copyright 2018, Springer
图10 (A)双元检测cTnI和CK-MB示意图[128];(B)三明治结构双元检测H-FABP和cTnI示意图[129];(C)结合金芯片的SERS免疫分析平台检测cTnI和CK-MB示意图[130];(D)基于PS微腔的SERS免疫分析平台检测cTnI和CK-MB示意图[131]
Fig. 10 (A) Dual detection of cTnI and CK-MB[128]; Copyright 2013, The Royal Society of Chemistry; (B) dual detection of H-FABP and cTnI via sandwich detection structure[129]; Copyright 2020, The Royal Society of Chemistry; (C) Simultaneous detection of cTnI and CK-MB by SERS immunoassay platform combined with gold chip[130]; Copyright 2019, The Royal Society of Chemistry; (D) PS microcavity-based on SERS immunoassay platform for dual-detection of cTnI and CK-MB[131]. Copyright 2021, Elsevier
图11 (A):多重T线的SERS与LFIA联用方法用于同时且快速地定量检测Myo、cTnI和CK-MB[135];(B):单条T线的SERS LFIA同时检测Myo、cTnI和CK-MB[136]
Fig.11 (A): Multiple T-line SERS-LFIA for simultaneous and quantitative detection of Myo, cTnI and CK-MB[135]; Copyright 2018, Elsevier; (B): Single T-line SERS-LFIA for simultaneous detection of Myo, cTnI and CK-MB[136]. Copyright 2018, Elsevier
表1 归纳总结已报道SERS心肌生物标志物检测原理及性能指标
Table 1 Summary of the reported SERS detection principles and performances on myocardial injury-related biomarkers
Biomarkers Detection principles SERS materials Raman molecules LODs Linear ranges refs
cTnI Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI-SERS immunoprobes"
Combining SERS and magnetic separation
Au NPs Malachite green isothiocyanate 5 pg/mL 0.01~1000 ng/mL 116
Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Au-Au core-shell NPs 4-nitrobenzenthiole 0.1 ng/mL 0~100 ng/mL 117
Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI-(core-shell) SERS immunoprobes "
Combining SERS and magnetic separation
Au-Ag core-shell NPs 4-mercaptobenzoic acid 9.80 pg/mL 0~2.0 ng/mL 118
Sandwich-type "capture probe (antibody functionalized magnetic bead)-cTnI-SERS immunoprobes
Combination of SERS probes and immune magnetic beads PDMS enrichment device
Ag NPs 5,5'-dithiobis(2-nitrobenzoic acid) 3.7 pg/mL 0~250 ng/mL 119
Sandwich-type "aptamer-immobilized Au nanoplate-cTnI-SERS aptamer probes "
Recognition of cTnI by aptamer
Au NPs Sulfocyanine 5 2.4 pg/mL 2.4 pg/mL~2.4 ng/mL 120
Aptamers modified bimetallic magnetic nanoparticles-cTnI
Combining SERS and magnetic separation and recognition of cTnI by aptamer
Fe3O4@Ag@Au NPs Coomassie Brilliant Blue G-250 5.50 pg/mL 0.01~100 ng/mL 121
CK-MB Sandwich-type "capture probe-cTnI-SERS immunoprobes" gold-urchin nanoparticles Tert-Butylhydroquinone 10 pg/mL 0.01~100 ng/mL 122
Myo Sandwich-type "capture substrates-Myo-SERS probes " Ag NPs 4-mercaptobenzoic acid 1.5 ng/mL - 125
Antibody-modified substrates to capture Myo Ag NPs Rhodamine 6G 10 ng/mL 5 μg/mL~10 ng/mL 126
Aptamer-labeled AuNP-WS2 nanohybrid capture Myo Au NPs Rhodamine 6G 10 ng/mL 10 fg/mL~0.1 μg/mL 127
cTnI and CK-MB Sandwich-type "capture probe (antibody functionalized magnetic bead)-cTnI and CK-MB-SERS immunoprobes
Combining SERS and magnetic separation
Au NPs Malachite green isothiocyanate and X-rhodamine-5-(and-6)-isothiocyanate 33.7 pg/mL and 42.5 pg/mL 10 pg/mL~1 mg/mL 128
Sandwich-type "capture probe-cTnI and CK-MB-SERS immunoprobes" AuNPs Malachite green isothiocyanate 8.9 pg/mL and 9.7 pg/mL 0 ~100 ng/mL 130
Sandwich-type "capture probe-cTnI and CK-MB-SERS immunoprobes"
Combining SERS and optical microcavity
Au NPs 5,5'-Dithio bis-(2-nitrobenzoic acid) and 4-mercaptobenzoic acid 3.16 pg/mL and 4.27 pg/mL 0.01~100 ng/mL 131
cTnI and H-FABP Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI and H-FABP-SERS immunoprobes
Combining SERS and magnetic separation
Ag-Au core-shell NPs 4-mercaptobenzonitrile and Thiols-poly (ethyl-ene glycol)-COOH 639.6 pg/mL and 4.4 pg/mL 0.0~100.0 ng/mL and 0.0~1.00 ng/mL 129
cTnI、CK-MB and Myo Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Ag-Au core-shell NPs Nile blue A 0.44, 3.20 and 0.55 pg/mL 0.01~50 ng/mL, 0.01~500 ng/mL and 0.02~90 ng/mL 135
Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Ag-Au core-shell NPs Nile blue A,
Methylene blue and Rhodamine 6G
0.89, 4.2 and 0.93 pg/mL 0.01~50 ng/mL, 0.01~500 ng/mL and 0.02~90 ng/mL 136
[1]
Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C, CotÉ G L, Di Carlo D. Biosens. Bioelectron., 2021, 171: 112621.
[2]
Virani S S, Alonso A, Benjamin E J, Bittencourt M S, Callaway C W, Carson A P, Chamberlain A M, Chang A R, Cheng S, Delling F N. Circulation., 2020, 141: e139.
[3]
Mythili S, Malathi N. Biomed. Rep., 2015, 3: 743.
[4]
Daubert M A, Jeremias A. Vasc. Health Risk Manag., 2010, 6: 691.
[5]
Thygesen K. Eur. Heart J., 2018, 39: 3757.
[6]
Westermann D, Neumann J T, Sörensen N A, Blankenberg S. Nat. Rev. Cardiol., 2017, 14: 472.

doi: 10.1038/nrcardio.2017.48     pmid: 28383022
[7]
Sayali U, Ambalika T, Shalini P. Adv. Health Care Technol., 2018, 4: 1.
[8]
Zhang G J, Ning Y. Anal. Chim. Acta., 2012, 749: 1.
[9]
Leisy P J, Coeytaux R R, Wagner G S, Chung E H, Mcbroom A J, Green C L, Williams J W, Sanders G D. J. Electrocardiol., 2013, 46: 92.
[10]
Hoekstra J W, O’neill B J, Pride Y B, Lefebvre C, Diercks D B, Peacock W F, Fermann G J, Gibson C M, Pinto D, Giglio J. Ann. Emerg. Med., 2009, 54: 779.

doi: 10.1016/j.annemergmed.2009.06.525     pmid: 19766352
[11]
Whiting P F, Weswood M E, Rutjes A W, Reitsma J B, Bossuyt P N, Kleijnen J. Bmc. Med. Res. Methodol., 2006, 6: 1.
[12]
Michaelides A P, Dilaveris P E, Psomadaki Z D, Richter D J, Andrikopoulos G K, Pitsilides N, Stefanadis C, Toutouzas P K, Dounis V. Clin. Cardiol., 1999, 22: 403.

doi: 10.1002/clc.4960220607     pmid: 10376179
[13]
Menown I, Allen J, Anderson J M, Adgey A. Eur. Heart J., 2001, 22: 218.

pmid: 11161933
[14]
Fathil M, Arshad M, Gopinath S C, Hashim U, Adzhri R, Ayub R, Ruslinda A, Nuzaihan M, Azman A, Zaki M. Biosens. Bioelectron., 2015, 70: 209.

doi: 10.1016/j.bios.2015.03.037     pmid: 25841117
[15]
Thygesen K, Alpert J S, Jaffe A S, Chaitman B R, Bax J J, Morrow D A, White H D, Mickley H, Crea F, Van De Werf F. Eur. Heart J., 2019, 40: 237.
[16]
Apple F S, Wu A H, Jaffe A S, Panteghini M, Christenson R H, Members N C, Christenson R H, Apple F S, Cannon C P, Francis G. Circulation., 2007, 116: e95.

doi: 10.1161/CIRCULATIONAHA.107.185266     pmid: 17630411
[17]
Strimbu K, Tavel J A. Curr. Opin. HIV AIDS., 2010, 5: 463.

doi: 10.1097/COH.0b013e32833ed177     pmid: 20978388
[18]
Wang J, Wang X, Ren L, Wang Q, Li L, Liu W, Wan Z, Yang L, Sun P, Ren L,. Anal. Chem., 2009, 81: 6210.
[19]
Apple F S, Wu A, Jaffe A S, Panteghini M, Christenson R H, Christenson R H, Apple F S, Cannon C P, Frances G S, Jesse R L. Clin. Biochem., 2008, 41: 222.

doi: 10.1016/j.clinbiochem.2007.07.001     pmid: 18035345
[20]
Xu H, Li S, Peng Z, Othman A M, Leblanc R M. Physiol. Plant., 2016, 49: 141.
[21]
Antman E, Bassand J P, Klein W, Ohman M, Sendon J, RydÉn L, Simoons M, Tendera M. J. Am. Coll. Cardiol., 2000, 36: 959.
[22]
Group N W. Clin. Chem., 2007, 53: 2086.
[23]
Bottenus D, Jubery T Z, Ouyang Y, Dong W J, Dutta P, Ivory C F. Lab Chip., 2011, 11: 890.

pmid: 21416810
[24]
Welsh P, Preiss D, Hayward C, Shah A S, Mcallister D, Briggs A, Boachie C, Mcconnachie A, Padmanabhan S, Welsh C J C. Circulation., 2019, 139: 2754.

doi: 10.1161/CIRCULATIONAHA.118.038529     pmid: 31014085
[25]
Wilkinson J M, Grand R. Nature, 1978, 271: 31.
[26]
Eric C, Christenson R H. Ann. Lab Med., 2013, 33: 309.

doi: 10.3343/alm.2013.33.5.309     pmid: 24003420
[27]
Cummins B, Auckland M L, Cummins P. Am. Heart J., 1987, 113: 1333.

pmid: 3591601
[28]
Panteghini M, Pagani F, Yeo K T J, Apple F S, Christenson R H, Dati F, Mair J, Ravkilde J, Wu A H B. Clin. Chem., 2004, 50: 327.

pmid: 14656904
[29]
Leurent G, Langella B, Fougerou C, Lentz P A, Larralde A, Bedossa M, Boulmier D, Breton H L. Arch. Cardiovasc Dis., 2011, 104: 161.
[30]
Ahammad A, Choi Y H, Koh K, Kim J H, Lee M. Int. J. Electrochem. Sci., 2011, 6: 1906.
[31]
Sörensen N A, Dönmez G, Neumann. J T, Nikorowitsch J, Rübsamen N, Blankenberg S, Westermann D, Zeller T, Karakas M. Biomolecules., 2019, 9: 108.
[32]
Roberts R. Ann. Intern. Med., 1973, 79: 741.

pmid: 4148054
[33]
Collinson P O. Eur. Heart J., 1998, 19: N16.
[34]
Zhang J, Lv X, Feng W, Li X, Li K, Deng Y. Mikrochim. Acta., 2018, 185: 1.
[35]
Jaf Fe A S, Ravkilde J, Roberts R, Naslund U, Apple F S, Galvani M, Katus H. Circulation., 2000, 102: 1216.
[36]
Wilson Tang W, Francis G S, Morrow D A, Newby L K, Cannon C P, Jesse R L, Storrow A B, Christenson R H, Members C, Christenson R H,. Circulation., 2007, 116: e99.

doi: 10.1161/CIRCULATIONAHA.107.185267     pmid: 17630410
[37]
Lai X H, Liang R L, Liu T C, Dong Z N, Wu Y S, Li L H. J Fluoresc., 2016, 26: 987.
[38]
Torabi F, Far H, Danielsson B, Khayyami M. Biosens. Bioelectron., 2007, 22: 1218.
[39]
Thygesen K, Alpert J S, White H D. J. Am. Coll. Cardiol., 2007, 50: 2173.
[40]
Wu D, Chen Y, Hou S, Fang W, Duan H J C. ChemBioChem., 2019, 20: 2432.
[41]
Jaffe A S, Babuin L, Apple F S. J. Am. Coll. Cardiol., 2006, 48: 1.
[42]
Neumann J T, Sörensen N A, Schwemer T, Ojeda F, Bourry R, Sciacca V, Schaefer S, Waldeyer C, Sinning C, RennÉ T. JAMA Cardiol., 2016, 1: 397.
[43]
Sallach S M, Nowak R, Hudson M P, Tokarski G, McCord J. J. Am. Coll. Cardiol., 2004, 94: 864.
[44]
Mair J, Artner-Dworzak E, Lechleitner P, Morass B, Smidt J, Wagner I, Dienstl F, Puschendorf B. Br. Heart J., 1992, 68: 462.

doi: 10.1136/hrt.68.11.462     pmid: 1467029
[45]
Mascini M, Tombelli S. Biomarkers., 2008, 13: 637.

doi: 10.1080/13547500802645905      pmid: 19061054
[46]
Reyes-Retana J A, Duque-Ossa L C. Curr. Probl. Cardiol., 2021, 46: 100739.
[47]
Qureshi A, Gurbuz Y, Niazi J H. Sens. Actuators B Chem., 2012, 171/172: 62.
[48]
Gomes-Filho S, Dias A, Silva M, Silva B, Dutra R F. Microchem. J., 2013, 109: 10.
[49]
Horak J, Dincer C, Qelibari E, Bakirci H, Urban G. Sens. Actuators B Chem., 2015, 209: 478.
[50]
He H Z, Leung K H, Yang H, Chan S H, Leung C H, Zhou J, Bourdoncle A, Mergny J L, Ma D L. Biosens. Bioelectron., 2013, 41: 871.
[51]
Leung C H, Zhong H J, He H Z, Lu L, Chan S H, Ma D L. Chem. Sci., 2013, 4: 3781.
[52]
Lee J, Lee Y, Park J Y, Seo H, Lee T, Lee W, Sang K K, Hahn Y K, Jung J Y, Kim S. Sens. Actuators B Chem., 2013, 178: 19.
[53]
Liu J, Zhang L, Wang Y, Zheng Y, Sun S. Measurement., 2014, 47: 200.
[54]
Balsam J, Ossandon M, Bruck H A, Lubensky I, Rasooly A. Expert Rev. Mol. Diagn., 2013, 7: 243.
[55]
Ran B, Xianyu Y, Dong M, Chen Y, Qian Z, Jiang X. Anal. Chem., 2017, 89: 6113.
[56]
Juronen E I, Viikmaa M H, Mikelsaar A. J. Immunol. Methods., 1988, 111: 109.

pmid: 2455749
[57]
Jiao L, Zhang L, Du W, Li H, Yang D, Zhu C. Nanoscale, 2019, 11: 8798.

doi: 10.1039/c8nr08741e     pmid: 30820494
[58]
Dobrovolskaia E, Gam A, Slater J. Clin. Exp. Allergy., 2006, 36: 525.

pmid: 16630159
[59]
Han G R, Kim M G. Sensors, 2020, 20: 2593.
[60]
Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Anal. Chim. Acta, 2013, 758: 1.
[61]
Lin Y, Zhou Q, Lin Y, Tang D, Niessner R, Knopp D. Anal. Chem., 2015, 87: 8531.
[62]
Zhang T, Ma N, Ali A, Wei Q, Wu D, Ren X. Biosens. Bioelectron., 2018, 119: 176.

doi: S0956-5663(18)30618-3     pmid: 30125879
[63]
Zhang B, Zhang Y, Liang W, Yu X, Tan H, Wang G, Li A, Jin J, Huang L. RSC Advances., 2017, 7: 2486.
[64]
Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J. Biosens. Bioelectron., 2018, 113: 142.
[65]
Lou L, Yu K, Zhang Z, Huang R, Zhu J, Wang Y, Zhu Z. Nano Research., 2012, 5: 272.
[66]
Bailey M R, Pentecost A M, Selimovic A, Martin R S, Schultz Z D. Anal. Chem., 2015, 87: 4347.
[67]
Lu W B, Wang Y, Cao X, Li L, Dong J, Qian W. New J. Chem., 2015, 39: 5420.
[68]
Dodeigne C, Thunus L, Lejeune R. Talanta., 2000, 51: 415.

pmid: 18967873
[69]
Ekins R, Chu F, Micallef J. J. Biolumin. Chemilumin., 1989, 4: 59.

pmid: 2801243
[70]
Cho I H, Paek E H, Kim Y K, Kim J H, Paek S H. Anal. Chim. Acta., 2009, 632: 247.
[71]
Han G R, Kim M G. Biotechnol. Bioprocess Eng., 2019, 24: 206.
[72]
Zhao H, Su E, Huang L, Zai Y F, Liu Y, Chen Z, Li S, Jin L, Deng Y, He N Y. Chin. Chem. Lett., 2022, 33: 743.
[73]
Zhao L, Sun L, Chu X. Trends Analyt Chem., 2009, 28: 404.
[74]
Kurihara T, Yanagida A, Yokoi H, Koyata A, Matsuya T, Ogawa J, Okamura Y, Miyamoto D. Anal. Biochem., 2008, 375: 144.

doi: 10.1016/j.ab.2007.12.030     pmid: 18211813
[75]
Darain F, Yager P, Gan K L, Tjin S C. Biosens. Bioelectron., 2009, 24: 1744.
[76]
Hill H R, Martins T B. Methods., 2006, 38: 312.
[77]
Song S Y, Han Y D, Kim K, Yang S S, Yoon H C. Biosens. Bioelectron., 2011, 26: 3818.
[78]
Xu H, Zhang Z. Biosens. Bioelectron., 2007, 22: 2743.
[79]
Ganesh N, Block I D, Mathias P C, Wei Z, Chow E, Malyarchuk V, Cunningham B T. Opt. Express., 2008, 16: 21626.
[80]
Shen Y, Liu S, Yang J, Wang L, Tan X, He Y. Sens. Actuators B Chem., 2014, 199: 389.
[81]
Chen J, Ran F, Chen Q, Luo D, Ma W, Han T, Wang C, Wang C,. RSC Advances, 2019, 9: 4463.
[82]
Hayes M A, Petkus M M, Garcia A A, Taylor T, Mahanti P. Analyst., 2009, 134: 533.

doi: 10.1039/b809665a     pmid: 19238291
[83]
Wang L H, Song C Y, Zhang L, Zhu D. Nanoplasmonic Materials and Biomedical Applications. Beijing: Beijing Science Press, 2017.
[84]
Elina A, Zul O. ACS Nano., 2009, 3: 3529.

doi: 10.1021/nn9010768     pmid: 19891490
[85]
Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Anal. Bioanal Chem., 2009, 394: 1729.
[86]
Nie S, Emory S R. Science., 1997, 275: 1102.

doi: 10.1126/science.275.5303.1102     pmid: 9027306
[87]
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys. Rev. Lett., 1997, 78: 1667.
[88]
Bhardwaj V, Srinivasan S, Mcgoron A. J. Biosens. Bioelectron., 2013, 12: 2.
[89]
Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Anal. Chem., 2003, 75: 5936.

pmid: 14588035
[90]
Mohs A M, Mancini M C, Singhal S, Provenzale J M, Leyland-Jones B, Wang M D, Nie S. Anal. Chem., 2010, 82: 9058.
[91]
Sha M Y, Xu H, Natan M J, Cromer R. J. Am. Chem. Soc., 2008, 130: 17214.
[92]
Beier H T, Cowan C B, Chou I H, Pallikal J, Henry J E, Benford M E, Jackson J B, Good T A, CotÉ G L. Plasmonics., 2007, 2: 55.
[93]
An J H, El-Said W A, Yea C H, Kim T H, Choi J W. J. Nanosci. Nanotechnol., 2011, 11: 4424.
[94]
Zhang J J, Yang Y J, Jiang X Y, Dong C, Song C Y, Han C Q, Wang L H. Biosens. Bioelectron., 2019, 141: 111402.
[95]
Yang Y J, Jiang X Y, Jie C, Song C Y, Wang L H. Sci. China Mater., 2017, 60: 1129.
[96]
Song C Y, Yang Y J, Yang B Y, Sun Y Z, Zhao Y P, Wang L H. Nanoscale, 2016, 8: 17365.

pmid: 27714088
[97]
Fleischmann M, Hendra P J, Mcquillan A J. Chem. Phys. Lett., 1974, 26: 163.
[98]
Jeanmaire D L, Van Duyne R P. J. Electroanal. Chem. Interfacial.Electrochem., 1977, 84: 1.
[99]
Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99: 5215.
[100]
Kirtley J, Jha S, Tsang J. Solid State Commun., 1980, 35: 509.
[101]
Park T H, Galperin M. Phys. Rev. B., 2011, 84: 075447.
[102]
Doering W E, Nie S. J. Phys. Chem. B., 2002, 106: 311.
[103]
Song C Y, Yang Y J, Yang B Y, Min L H, Wang L H. J. Mater. Chem. B., 2016, 4: 1811.
[104]
Song C Y, Jiang X Y, Yang Y J, Zhang J J, Larson S, Zhao Y P, Wang L H. ACS Appl. Mater. Interfaces., 2020, 12: 31242.
[105]
Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z. Nano Lett., 2010, 10: 553.

doi: 10.1021/nl903414x     pmid: 20039694
[106]
Wang H, Yang R, Yang L, Tan W. ACS Nano, 2009, 3: 2451.

doi: 10.1021/nn9006303     pmid: 19658387
[107]
Ellington A D, Szostak J W. Nature, 1990, 346: 818.
[108]
Tuerk C, Gold L. Science, 1990, 249: 505.

doi: 10.1126/science.2200121     pmid: 2200121
[109]
Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X. Nanoscale, 2016, 8: 1873.
[110]
Chung E, Gao R, Ko J, Choi N, Lim D W, Lee E K, Chang S I, Choo J. Lab Chip., 2013, 13: 260.
[111]
Feng J, Wu X, Ma W, Kuang H, Xu L, Xu C. Chem. Commun., 2015, 51: 14761.
[112]
Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T. Mikrochim Acta, 2016, 183: 249.
[113]
Muhammad M, Huang Q. Talanta, 2021, 227: 122188.
[114]
Lee J H, Yigit M V, Mazumdar D, Yi L. Adv. Drug Deliv. Rev., 2010, 62: 592.
[115]
Porter M, Lipert R J, Siperko L M, Wang G, Narayanan R. Chem. Soc. Rev., 2008, 37: 1001.

doi: 10.1039/b708461g     pmid: 18443685
[116]
Fu X, Wang Y, Liu Y, Liu H, Fu L, Wen J, Li J, Wei P, Chen L. Analyst., 2019, 144: 1582.
[117]
Khlebtsov B N, Bratashov D N, Byzova N A, Dzantiev B B, Khlebtsov N G. Nano Res., 2019, 12: 413.

doi: 10.1007/s12274-018-2232-4    
[118]
Hu C, Ma L, Mi F, Guan M, Guo C, Peng F, Sun S, Wang X, Liu T, Li J. New J. Chem., 2021, 45: 3088.
[119]
Garza J T, Cote G L. Anal. Chem., 2017, 89: 13120.
[120]
Lee H, Youn H, Hwang A, Lee H, Park J Y, Kim W, Yoo Y, Ban C, Kang T, Kim B. Nanomaterials, 2020, 10: 1402.
[121]
Lin C, Li L, Feng J, Zhang Y, Lin X, Guo H, Li R. Mikrochim Acta, 2022, 189: 1.
[122]
Lim W Y, Goh C H, Thevarajah T M, Goh B T, Khor S M. Biosens. Bioelectron., 2020, 147: 111792.
[123]
Garg P, Morris P, Fazlanie A L, Vijayan S, Dancso B, Dastidar A G, Plein S, Mueller C, Haaf P. Intern. Emerg. Med., 2017, 12: 147.
[124]
Szunerits S, Mishyn V, Grabowska I, Boukherroub R. Biosens. Bioelectron., 2019, 131: 287.

doi: S0956-5663(19)30110-1     pmid: 30851492
[125]
Kong X, Yu Q, Zhang X, Du X, Gong H, Jiang H. J. Mater. Chem., 2012, 22: 7767.
[126]
El-Said W A, Fouad D M, El-Safty S A. Sens. Actuators B Chem., 2016, 228: 401.
[127]
Shorie M, Kumar V, Kaur H, Singh K, Tomer V K, Sabherwal P. Mikrochim. Acta, 2018, 185: 1.
[128]
Chon H, Lee S, Yoon S Y, Lee E K, Chang S I, Choo J. Chem. Commun., 2014, 50: 1058.
[129]
Hu C, Ma L, Guan M, Mi F, Peng F, Guo C, Sun S, Wang X, Liu T, Li J. Anal. Methods., 2020, 12: 5442.
[130]
Cheng Z, Wang R, Xing Y, Zhao L, Choo J, Yu F. Analyst., 2019, 144: 6533.

doi: 10.1039/c9an01260e     pmid: 31553332
[131]
Wang J, Xu C, Lei M, Ma Y, Wang X, Wang R, Sun J. Microchem. J., 2021, 171: 106875.
[132]
Tuteja S K, Kukkar M, Suri C R, Paul A K, Deep A. Biosens. Bioelectron., 2015, 66: 129.
[133]
Jia L, MacDonald J. Biosens. Bioelectron., 2016, 83: 177.

doi: 10.1016/j.bios.2016.04.021     pmid: 27125840
[134]
Farka Z, Juík T, Ková D, Trnková L, Skládal P. Chem. Rev., 2017, 117: 9973.
[135]
Zhang D, Huang L, Liu B, Ni H, Sun L, Su E, Chen H, Gu Z, Zhao X. Biosens. Bioelectron., 2018, 106: 204.

doi: S0956-5663(18)30074-5     pmid: 29428590
[136]
Zhang D, Huang L, Liu B, Su E, Chen H Y, Gu Z, Zhao X. Sens. Actuators B Chem., 2018, 277: 502.
[137]
Lu W B, Wang Y, Cao X, Li L, Dong J, Qian W. New J. Chem., 2015, 39: 5420.
[138]
Matschulat A, Drescher D, Kneipp J. ACS Nano, 2010, 4: 3259.

doi: 10.1021/nn100280z     pmid: 20503969
[139]
Cheng Z Y, Choi N, Wang R, Lee S, Moon K C, Yoon S Y, Chen L X, Choo J. ACS Nano, 2017, 11: 4926.

doi: 10.1021/acsnano.7b01536     pmid: 28441008
[140]
Hori S I, Herrera A, Rossi J, Zhou J H. Cancers, 2018, 10: 9.
[141]
Hassan E M, Willmore W G, Derosa M C. Nucleic. Acid. Ther., 2016, 26: 335.

pmid: 27736306
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[4] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[5] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[6] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[7] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[8] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[9] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[10] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[11] 陶琴, 董健, 钱卫平*. 表面增强拉曼光谱在定量分析中的应用[J]. 化学进展, 2013, 25(06): 1031-1041.
[12] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[13] 李晶, 杨晓英*. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(0203): 380-396.
[14] 闻艳丽, 林美华, 裴昊, 鲁娜, 樊春海*. 基于电化学技术的microRNA生物传感器[J]. 化学进展, 2012, (9): 1656-1664.
[15] 宋英攀, 冯苗, 詹红兵*. 石墨烯纳米复合材料在电化学生物传感器中的应用[J]. 化学进展, 2012, (9): 1665-1673.