English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 380-396 DOI: 10.7536/PC120815 前一篇   后一篇

• 综述与评论 •

新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用

李晶1, 杨晓英*2   

  1. 1. 天津出入境检验检疫局工业产品安全技术中心 天津 300201;
    2. 天津市临床药物关键技术重点实验室 天津医科大学药学院 天津 300070
  • 收稿日期:2012-08-01 修回日期:2012-10-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 杨晓英 E-mail:yangxiaoying@tijmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51103106)和天津市科技计划项目(No.12ZCZDSF01000)资助

Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing

Li Jing1, Yang Xiaoying*2   

  1. 1. Industrial Products Safety Center of Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300201, China;
    2. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
  • Received:2012-08-01 Revised:2012-10-01 Online:2013-02-24 Published:2012-12-28

纳米生物检测是目前纳米科学、生物化学及诊断技术相结合的新的重要研究方向。石墨烯由于具有优良的电子、光学、热学、化学和机械性质,使其具有构筑探针分子和信号传递并放大的三重作用,成为应用于超灵敏生物传感器的理想材料。快速的电子传递和可多重修饰的化学性质使其能够实现准确而高选择性的生物分子检测。石墨烯及其复合材料越来越多地被应用到生物传感器的制备中。本文综述了近几年石墨烯及其衍生物在生物传感器研究中的进展,包括修饰石墨烯的各种材料、多种生物活性物质在石墨烯表面的直接电子转移和石墨烯在酶传感器、免疫传感器、基因传感器以及一些生物小分子的检测等方面的研究。

Nanotechnology for bio-detection is a new important research field combining nanoscience, biochemistry and diagnostic techniques. Graphene has triple functions of constructing probe molecules, signal transfer and signal amplification due to its remarkable electronic, optical, thermal, chemical and mechanical properties, which make it a promise material for ultrasensitive nanomaterial based biosensors. Rapid electron transfer and manipulable multi-functionalized surface chemistry make it realize accurate and selective detection of biomolecules. Graphene and its nanocomposites are used in the preparation of biosensor gradually. This review focuses on recent advances of graphene and its derivatives in applications of biosensing, including various materials for modifying graphene, the direct electron transfer of various bioelectroactive substances on graphene and graphene in enzymatic biosensors, immunobiosensors, gene biosensors and detection of small biomolecules. Contents
1 Introduction
2 Direct electron transfer of bioelectroactive substances on graphene
2.1 Direct electron transfer of redox protein on graphene
2.2 Direct electron transfer of glucose oxidase on graphene
2.3 Direct electron transfer of peroxidase on graphene
3 Applications of graphene in the detection of various biomolecules
3.1 Graphene-based enzymatic biosensors
3.2 Graphene-based immunobiosensors
3.3 Graphene-based gene biosensors
3.4 Applications of graphene in the detection of small biomolecules
4 Conclusions and Prospects

中图分类号: 

()

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[2] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315: 1379-1379
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau N. Nano Lett., 2008, 8: 902-907
[4] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Phys. Rev. Lett., 2008, 101: 196405-196408
[5] Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385-388
[6] Service R F. Science, 2009, 324: 875-877
[7] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39: 3157-3180
[8] Chen D, Feng H B, Li J H. Chem. Rev., doi: 10.1021/cr300115g
[9] Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H. Adv. Funct. Mater., 2009, 19: 2782-2789
[10] Liu J B, Li Y L, Li Y M, Li J H, Deng Z X. J. Mater. Chem., 2010, 20: 900-906
[11] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4: 1790-1798
[12] Zhang Q, Yang S J, Zhang J, Zhang L, Kang P L, Li J H, Xu J W, Zhou H, Song X M. Nanotechnology, 2011, 22: art. no. 494010
[13] Liu Y, Liu Y, Feng H B, Wu Y M, Joshi L, Zeng Xi Q, Li J H. Biosens. Bioelectron., 2012, 35: 63-68
[14] Mohanty N, Berry V. Nano Lett., 2008, 8: 4469-4476
[15] Xu H F, Dai H, Chen G N. Talanta, 2010, 81: 334-338
[16] Liu K P, Zhang J J, Yang G H, Wang C M, Zhu J J. Electrochem. Commun., 2010, 12: 402-405
[17] Wang L, Zhang X H, Xiong H Y, Wang S F. Biosens. Bioelectron., 2010, 26: 991-995
[18] Feng X M, Li R M, Hu C H, Hou W H. J. Electroanal. Chem., 2011, 657: 28-33
[19] He Y P, Sheng Q L, Zheng J B, Wang M Z, Liu B. Electrochim. Acta, 2011, 56: 2471-2476
[20] Xu J, Liu C H, Wu Z F. Microchim. Acta, 2011, 172: 425-430
[21] Wu J F, Xu M Q, Zhao G C. Electrochem. Commun., 2010, 12: 175-177
[22] Yue R, Lu Q, Zhou Y K. Biosens. Bioelectron., 2011, 26: 4436-4441
[23] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81: 2378-2382
[24] Wu P, Shao Q, Hu Y J, Jin J, Yin Y J, Zhang H, Cai C X. Electrochim. Acta, 2010, 55: 8606-8614
[25] Kang X H, Wang J, Wu H, Aksay I A, Liu J, Lin Y H. Biosens. Bioelectron., 2009, 25: 901-905
[26] Lu Q, Dong X C, Li L J, Hu X. Talanta, 2010, 82: 1344-1348
[27] Li M G, Xu S D, Tang M, Liu L, Gao F, WangY L. Electrochim. Acta, 2011, 56: 1144-1149
[28] Zhou Y, Liu S, Jiang H J, Yang H, Chen H Y. Electroanalysis, 2010, 22 (12): 1323-1328
[29] Huang K J, Niu D J, Liu X, Wu Z W, Fan Y, Chang Y F, Wu Y Y. Electrochim. Acta, 2011, 56: 2947-2953
[30] Liu Y, Yu D S, Zeng C, Miao Z C, Dai L M. Langmuir, 2010, 26(9): 6158-6160
[31] Yang M H, Choi B G, Park H, Hong W H, Lee S Y, Park T J. Electroanalysis, 2010, 22(11): 1223-1228
[32] Zhang Q, Wu S Y, Zhang L, Lu J, Verproot F, Liu Y, Xing Z Q, Li J H, Song X M. Biosens. Bioelectron., 2011, 26: 2632-2637
[33] Zeng Q, Cheng J S, Liu X F, Bai H T, Jiang J H. Biosens. Bioelectron., 2011, 26: 3456-3463
[34] Zhang Y, Sun X M, Zhu L Z, Shen H B, Jia N Q. Electrochim. Acta, 2011, 56: 1239-1245
[35] Chen Y, Li Y, Sun D, Tian D B, Zhang J R, Zhu J J. J. Mater. Chem., 2011, 21: 7604-7611
[36] Song M J, Kim J H, Lee S K, Lim D S, Hwang S W, Whang D M. Electroanalysis, 2011, 23(10): 2408-2414
[37] Wu H, Wang J, Kang X H, Wang C M, Wang D H, Liu J, Aksay I A, Lin Y H. Talanta, 2009, 80: 403-406
[38] Gu Z G, Yang S P, Li Z J, Sun X L, Wang G L, Fang Y J, Liu J K. Electrochim. Acta, 2011, 56: 9162-9167
[39] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Langmuir, 2009, 25: 12030-12033
[40] Zeng Q, Cheng J S, Tang L H, Liu X F, Liu Y Z, Li J H, Jiang J H. Adv. Funct. Mater., 2010, 20: 3366-3372
[41] Zhang Q, Qiao Y, Hao F, Zhang L, Wu S Y, Li Y, Li J H, Song X M. Chem. Eur. J., 2010, 16: 8133-8139
[42] Zhou K F, Zhu Y H, Yang X L, Luo J, Li C Z, Luan S R. Electrochim. Acta, 2010, 55: 3055-3060
[43] Zhang B, Cui Y L, Chen H F, Liu B Q, Chen G N, Tang D P. Electroanalysis, 2011, 23(8): 1821-1829
[44] Cui Y L, Zhang B, Liu B Q, Chen H F, Chen G N, Tang D P. Electrochim. Acta, 2011, 174: 137-144
[45] Xu X X, Zhang J X, Guo F, Zheng W, Zhou H M, Wang B L, Zheng Y F, Wang Y B, Cheng Y, Lou X, Jang B Z. Colloids Surf. B: Biointerf., 2011, 84: 427-432
[46] Zhou K F, Zhu Y H, Yang X L, Li C Z. Electroanalysis, 2011, 23(4): 862-869
[47] Dey R S, Raj C R. J. Phys. Chem. C, 2010, 114: 21427-21433
[48] Sasidharan S J A, Tessy T B, Thevasahayam A, Raghavan B R, Sundara R. Thin Solid Films, 2011, 519: 5667-5672
[49] Shan C S, Yang H F, Han D X, Zhang Q X, Ivask A, Niu L. Biosens. Bioelectron., 2010, 25: 1504-1508
[50] Guo K, Qian K, Zhang S, Kong J L, Yu C Z, Liu B H. Talanta, 2011, 85: 1174-1179
[51] Song W, Li D W, Li Y T, Li Y, Long Y T. Biosens. Bioelectron., 2011, 26: 3181-3186
[52] Liu F, Piao Y X, Choi K S, Seo T S. Carbon, 2012, 50: 123-133
[53] Zhang J, Lei J P, Pan R, Xue Y D, Ju H X. Biosens. Bioelectron., 2010, 26: 371-376
[54] Wang K, Liu Q, Dai L N, Yan J J, Ju C, Qiu B J, Wu X Y. Anal. Chim. Acta, 2011, 695: 84-88
[55] Wang K, Li H N, Wu J, Ju C, Yan J J, Liu Q, Qiu B J. Analyst, 2011, 136: 3349-3354
[56] Wang Y, Zhang S, Du D, Shao Y Y, Li Z H, Wang J, Engelhard M H, Li J H, Lin Y H. J. Mater. Chem., 2011, 21: 5319-5325
[57] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem. Int. Ed., 2010, 49: 5708-5711
[58] Liu F, Choi K S, Park T J, Lee S Y, Seo T S. BioChip J., 2011, 5(2): 123-128
[59] Huang Y X, Dong X C, Liu Y X, Li L J, Chen P. J. Mater. Chem., 2011, 21: 12358-12362
[60] Wan Y, Lin Z F, Zhang D, Wang Y, Hou B R. Biosens. Bioelectron., 2011, 26: 1959-1964
[61] Huang K J, Niu D J, Sun J Y, Zhu J J. J. Electroanal. Chem., 2011, 656: 72-77
[62] Du D, Zou Z X, Shin Y S, Wang J, Wu H, Engelhard M H, Liu J, Aksay I A, Lin Y H. Anal. Chem., 2010, 82: 2989-2995
[63] Han J, Zhuo Y, Chai Y Q, Mao L, Yuan Y L, Yuan R. Talanta, 2011, 85: 130-135
[64] Li H, Wei Q, He J, Li T, Zhao Y F, Cai Y Y, Du B, Qian Z Y, Yang M H. Biosens. Bioelectron., 2011, 26: 3590-3595
[65] Xu S J, Liu Y, Wang T H, Li J H. Anal. Chem., 2011, 83: 3817-3823
[66] Zhuo Y, Chai Y Q, Yuan R, Mao L, Yuan Y L, Han J. Biosens. Bioelectron., 2011, 26: 3838-3844
[67] Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K B. Adv. Mater., 2011, 23: 2221-2225
[68] Cai Y Y, Li H, Du B, Yang M H, Li Y, Wu D, Zhao Y F, Dai Y X, Wei Q. Biomaterials, 2011, 32: 2117-2123
[69] Lin L, Liu Y, Tang L H, Li J H. Analyst, 2011, 136: 4732-4737
[70] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13: 31-33
[71] Bai L J, Yuan R, Chai Y Q, Zhuo Y, YuanY L, Wang Y. Biomaterials, 2012, 33: 1090-1096
[72] Bo Y, Wang W Q, Qi J F, Huang S S. Analyst, 2011, 136: 1946-1951
[73] Bo Y, Yang H Y, Hu Y, Yao T M, Huang S S. Electrochim. Acta, 2011, 56: 2676-2681
[74] Muti M, Sharma S, Erdem A, Papakonstantinou P. Electroanalysis, 2011, 23(1): 272-279
[75] Tang L H, Wang Y, Liu Y, Li J H. ACS Nano, 2011, 5: 3817-3822
[76] Tang L H, Chang H X, Liu Y, Li J H. Adv. Funct. Mater., 2012, 22: 3083-3088
[77] Wang Y, Li Z H, Wang J, Li J H, Lin Y H. Trends Biotechnol., 2011, 29: 205-212
[78] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Ed., 2009, 48: 4785-4787
[79] Chang H X, Tang L H, Wang Y, Jiang J H, Li J H. Anal. Chem., 2010, 82: 2341-2346
[80] Wu C K, Zhou Y M, Miao X M, Ling L S. Analyst, 2011, 136: 2106-2110
[81] Liu F, Choi J Y, Seo T S. Biosens. Bioelectron., 2010, 25: 2361-2365
[82] Xu X J, Li J J, Li Q Q, Huang J, Dong Y Q, Hong Y N, Yan J W, Qin J G, Li Z, Tang B Z. Chem. Eur. J., 2012, 18: 7278-7286
[83] Xu X J, Huang J, Li J J, Yan J W, Qin J G, Li Z. Chem. Commun., 2011, 47: 12385-12387
[84] Wang Y, Li Z H, Hu D H, Lin C T, Li J H, Lin Y H. J. Am. Chem. Soc., 2010, 132 (27): 9274-9276
[85] Lin L, Liu Y, Zhao X, Li J H. Anal. Chem., 2011, 83: 8396-8402
[86] Wang Y, Li Y M, Tang L H, Lu J, Li J H. Electrochem. Commun., 2009, 11: 889-892
[87] Huang K J, Jing Q S, Wu Z W, Wang L, Wei C Y. Colloids Surf. B: Biointerf., 2011, 88: 310-314
[88] Hou S F, Kasner M L, Su S J, Patel K, Cuellari R. J. Phys. Chem. C, 2010, 114: 14915-14921
[89] Sun C L, Lee H H, Yang J M, Wu C C. Biosens. Bioelectron., 2011, 26: 3450-3455
[90] Chen J L, Yan X P, Meng K, Wang S F. Anal. Chem., 2011, 83: 8787-8793
[91] Du M, Yang T, Jiao K. J. Mater. Chem., 2010, 20: 9253-9260
[92] Huang K J, Niu D J, Sun J Y, Han C H, Wu Z W, Li Y L, Xiong X Q. Colloids Surf. B: Biointerf., 2011, 82: 543-549
[93] Wang Y, Lu J, Tang L H, Chang H X, Li J H. Anal. Chem., 2009, 81: 9710-9715

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[9] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[10] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[11] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[12] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[15] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.