English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 1031-1041 DOI: 10.7536/PC120716 前一篇   后一篇

• 综述与评论 •

表面增强拉曼光谱在定量分析中的应用

陶琴, 董健, 钱卫平*   

  1. 东南大学生物科学与医学工程学院 生物电子学国家重点实验室 南京 210096
  • 收稿日期:2012-07-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 钱卫平 E-mail:wqian@seu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21175022)和国家重点基础研究发展计划(973)项目(No.2012CB933302)资助

Quantitative Analysis of Surface-Enhanced Raman Spectroscopy

Tao Qin, Dong Jian, Qian Weiping*   

  1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
  • Received:2012-07-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

表面增强拉曼光谱(SERS)作为一种快速、灵敏的检测方法, 在很多领域有着广泛的应用前景。随着SERS技术的发展, SERS研究工作不再限于物质的定性检测, 更多地定位于样品中一种或多种成分的定量分析。本文详细介绍了三类SERS增强基底的制备, 包括传统固相基底、金属胶体溶液和基于纳米制造的等离子体共振纳米结构以及它们在定量分析中的优缺点;从分子取向、激发波长、内标(internal standard)和数据分析4个方面论述如何提高SERS定量分析时的灵敏度和可靠性。本文综述了SERS在定量分析中的应用, 简要分析其存在的问题并对其未来的发展进行展望。

As a promising analytical technique in recent years, surface-enhanced Raman spectroscopy (SERS) has received extensive attention due to its low limit of detection, high sensitivity and high specificity. Despite its tremendous potential, SERS was not widely applied in quantitative analysis of chemical and biological samples in the past years. However, the explosive development of nanotechnology and nano-fabrication has assisted the development of SERS as a quantitative analysis tool. As the enhancement of Raman scattering strongly depends on nanoscale surface morphology of the enhancing surface and can be easily influenced by other factors in an experiment, it is still a challenge to obtain reliable results comparable to those obtained from state-of-the-art analysis methods. The fabrication of three kinds of enhancing media including traditional solid substrates, colloidal nanoparticles and plasmonic nanostructures based on nano-fabrication and their respective advantages and drawbacks for quantitative SERS detection are summerized in this review. Furthermore, how to improve the sensitivity and reliability is investigated in aspects of molecular orientation, excitation wavelength, internal standard and data analysis. Meanwhile, several successful cases of quantitative SERS detection are presented. Finally, applications and prospects of its future researches are proposed. Contents
1 Introduction
2 Enhancing media
2.1 Preparation of enhancing media
2.2 Surface modification of enhancing media
2.3 Improve the sensitivity and reliability
3 Experimental factors
3.1 Molecular orientation
3.2 Excitation wavelength
3.3 Internal standard
3.4 Data analyzing
4 Examples of quantitative SERS
4.1 Direct detection
4.2 Indirect detection
5 Conclusions and outlook

中图分类号: 

()

[1] Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. Anal. Bioanal. Chem., 2008, 390: 113-124
[2] Capitán-Vallvey L F, López A J P. Analytica Chimica Acta, 2011, 696: 27-46
[3] Fan M, Andrade G F S, Brolo A G. Analytica Chimica Acta, 2011, 693: 7-25
[4] Kneipp K, Kneipp H, Kartha V B, Manoharan R, Deinum G, Itzkan I, Dasari R R, Feld M S. Phys. Rev. E, 1998, 57: 6281-6284
[5] Nie S M, Emery S R. Science, 1997, 275: 1102-1106
[6] Lombardi J R, Birke R L. Acc. Chem. Res., 2009, 42: 734-742
[7] 杨序纲(Yang X G), 吴琪琳(Wu Q L). 拉曼光谱的分析与应用(Analysis and Application of Raman Spectroscopy ). 北京: 国防工业出版社(Beijing: National Defence Industry Press), 2008. 37-38
[8] Hudson S D, Chumanov G. Anal. Bioanal. Chem., 2009, 394: 679-686
[9] Barhoumi A, Zhang D, Tam F, Halas N J. J. Am. Chem. Soc., 2008, 130: 5523-5529
[10] Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Analyst, 2010, 135: 1084-1089
[11] Xu T T, Huang J A, He L F, He Y, Su S, Lee S T. Appl. Phys. Lett., 2011, 99: art. no. 153113
[12] Ni F, Sheng R, Cotton T M. Anal. Chem., 1990, 62: 1958-1963
[13] Jarvis R M, Goodacre R. Chem. Soc. Rev., 2008, 37: 931-936
[14] Liu X, Huan S, Bu Y, Shen G, Yu R. Talanta, 2008, 75: 797-803
[15] Chen K, Han H, Luo Z, Wang Y, Wang X. Biosens. Bioelectron., 2012, 34: 118-124
[16] Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Anal. Bioanal. Chem., 2009, 394: 1729-1745
[17] Brown R J C, Milton M J T. J. Raman Spectrosc., 2008, 39: 1313-1326
[18] Fleischmann M, Hendra P, McQuillan A. Chemical Physics Letters, 1974, 26: 163-166
[19] Aroca R. Surface-Enhanced Vibrational Spectroscopy. NY: Wiley, 2006. 156-170
[20] Semin D J, Rowlen K L. Anal. Chem., 1994, 66: 4324-4331
[21] Norrod K L, Sudnik L M, Rousell D, Rowlen K L. Appl. Spectrosc., 1997, 51: 994-1001
[22] Creighton J A, Blatchford C G, Albrecht M G. J. Chem. Soc. Faraday Trans. 2, 1979, 75: 790-798
[23] Aroca R, Alvarez-Puebla R, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos J. Advances in Colloid and Interface Science, 2005, 116: 45-61
[24] Camafeita L, Sánchez-Cortés S, García-Ramos J. J. Raman Spectrosc., 1995, 26: 149-154
[25] Lee P, Meisel D J. Phys. Chem., 1982, 86: 3391-3395
[26] ?anchez-Cortés S, Garcia-Ramos J J. Raman Spectrosc., 1992, 23: 61-66
[27] Leopold N, Lendl B. J. Phys. Chem. B, 2003, 107: 5723-5727
[28] 高倩(Gao Q), 钱勇(Qian Y), 夏炎(Xia Y), 蒋彩云(Jiang C Y), 钱卫平(Qian W P). 化学学报(Acta Chimica Sinica), 2011, 69(14): 1617-1621
[29] Silvert P Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen K T. J. Mater. Chem., 1996, 6: 573-577
[30] Dos Santos D S Jr, Alvarez-Puebla R A, Oliveira O N Jr, Aroca R F. J. Mater. Chem., 2005, 15: 3045-3049
[31] Su Q, Ma X, Dong J, Jiang C, Qian W. ACS Appl. Mater. Interfaces, 2011, 3: 1873-1879
[32] SΛ'nchez-Cortés S, García-Ramos J V, Morcillo G, Tinti A. Journal of Colloid and Interface Science, 1995, 175: 358-368
[33] SΛ'nchez-Cortés S, García-Ramos J V, Morcillo G. Journal of Colloid and Interface Science, 1994, 167: 428-436
[34] Shirtcliffe N, Nickel U, Schneider S. Journal of Colloid and Interface Science, 1999, 211: 122-129
[35] SΛ'nchez-Cortés S, García-Ramos J V. Surf. Sci., 2001, 473: 133-142
[36] Bell S E J, Sirimuthu N M S. Chem. Soc. Rev., 2008, 37: 1012-1024
[37] Alvarez-Puebla R A, Arceo E, Goulet P J G, Garrido J J, Aroca R F. J. Phys. Chem. B, 2005, 109: 3787-3792
[38] Banholzer M J, Millstone J E, Qin L, Mirkin C A. Chem. Soc. Rev., 2008, 37: 885-897
[39] Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, Li B, Ozaki Y. Langmuir, 2004, 20: 1298-1304
[40] Grabar K C, Freeman R G, Hommer M B, Natan M J. Anal. Chem., 1995, 67: 735-743
[41] Brown K R, Natan M J. Langmuir, 1998, 14: 726-728
[42] Kuncicky D M, Prevo B G, Velev O D. J. Mater. Chem., 2006, 16: 1207-1211
[43] Willets K A, van Duyne R P. Annu. Rev. Phys. Chem., 2007, 58: 267-297
[44] Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X, van Duyne R P. Faraday Discuss., 2006, 132: 9-26
[45] Yang S, Cai W, Kong L, Lei Y. Adv. Funct. Mater., 2010, 20: 2527-2533
[46] Tao A R, Huang J, Yang P. Acc. Chem. Res., 2008, 41: 1662-1673
[47] Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X. Adv. Funct. Mater., 2008, 18: 2348-2355
[48] Félidj N, Truong S L, Aubard J, Lévi G, Krenn J R, Hohenau A, Leitner A, Aussenegg F R. J. Chem. Phys., 2004, 120: 7141-7146
[49] Fromm D P, Sundaramurthy A, Kinkhabwala A, Schuck P J, Kino G S, Moerner W E. J. Chem. Phys., 2006, 124: art. no. 061101
[50] Abu Hatab N A, Oran J M, Sepaniak M J. ACS Nano, 2008, 2: 377-385
[51] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Nature, 2010, 464: 392-395
[52] Jiang C, Qian Y, Gao Q, Dong J, Qian W, Ren B, Wang Z L, Tian Z Q. J. Mater. Chem., 2010, 20: 8711-8716
[53] Jung H Y, Park Y K, Park S, Kim S K. Analytica Chimica Acta, 2007, 602: 236-243
[54] Ko H, Chang S, Tsukruk V V. ACS Nano, 2008, 3: 181-188
[55] 崔颜(Cui Y), 任斌(Ren B), 田中群(Tian Z Q). 东南大学学报(Journal of Southeast University), 2011, 30(1): 254-262
[56] Park T, Lee S, Seong G H, Choo J, Lee E K, Kim Y S, Ji W H, Hwang S Y, Gweon D G. Lab Chip, 2005, 5: 437-442
[57] Bell S E J, Mackle J N, Sirimuthu N M S. Analyst, 2005, 130: 545-549
[58] Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G. Science, 1995, 267: 1629-1632
[59] McLaughlin C, MacMillan D, McCardle C, Smith W E. Anal. Chem., 2002, 74: 3160-3167
[60] Ruan C, Wang W, Gu B. Analytica Chimica Acta, 2006, 567: 114-120
[61] Stuart D A, Yuen J M, Shah N, Lyandres O, Yonzon C R, Glucksberg M R, Walsh J T, van Duyne R P. Anal. Chem., 2006, 78: 7211-7215
[62] Yonzon C R, Haynes C L, Zhang X, Walsh J T Jr, van Duyne R P. Anal. Chem., 2004, 76: 78-85
[63] Natan M J. Faraday Discuss., 2006, 132: 321-328
[64] Keir R, Igata E, Arundell M, Smith W E, Graham D, McHugh C, Cooper J M. Anal. Chem., 2002, 74: 1503-1508
[65] Bell S E J, Spence S J. Analyst, 2000, 126: 1-3
[66] Yeo B S, Schmid T, Zhang W, Zenobi R. Appl. Spectrosc., 2008, 62: 708-713
[67] Faulds K, Smith W, Graham D, Lacey R. Analyst, 2002, 127: 282-286
[68] Dong O, Lam D C C. Materials Chemistry and Physics, 2011, 126: 91-96
[69] Rao Y, Chen Q, Dong J, Qian W. Analyst, 2011, 136: 769-774
[70] Rao Y, Tao Q, An M, Rong C, Dong J, Dai Y, Qian W. Langmuir, 2011, 27: 13308-13313
[71] Barhoumi A, Zhang D, Halas N J. J. Am. Chem. Soc., 2008, 130: 14040-14041
[72] Fleger Y, Mastai Y, Rosenbluh M, Dressler D J. Raman Spectrosc., 2009, 40: 1572-1577
[73] Yu Q, Golden G. Langmuir, 2007, 23: 8659-8662
[74] Chowdhury J, Sarkar J, Tanaka T, Talapatra G. J. Phys. Chem. C, 2008, 112: 227-239
[75] Ling X, Wu J, Xu W, Zhang J. Small, 2012, 8: 1365-1372
[76] Jensen T R, Duval M L, Kelly K L, Lazarides A A, Schatz G C, van Duyne R P. J. Phys. Chem. B, 1999, 103: 9846-9853
[77] Felidj N, Aubard J, Levi G, Krenn J, Hohenau A, Schider G, Leitner A, Aussenegg F. Appl. Phys. Lett., 2003, 82: 3095-3097
[78] McFarland A D, Young M A, Dieringer J A, van Duyne R P. J. Phys. Chem. B, 2005, 109: 11279-11285
[79] Grand J, de La Chapelle M L, Bijeon J L, Adam P M, Vial A, Royer P. Phys. Rev. B, 2005, 72: art. no. 033407
[80] Guillot N, Shen H, Fremaux B, Peron O, Rinnert E, Toury T, de La Chapelle M L. Appl. Phys. Lett., 2010, 97: art. no. 023113
[81] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P. Nature Materials, 2008, 7: 442-453
[82] Alvarez-Puebla R, Cui B, Bravo-Vasquez J P, Veres T, Fenniri H. J. Phys. Chem. C, 2007, 111: 6720-6723
[83] Shadi I T, Cheung W, Goodacre R. Anal. Bioanal. Chem., 2009, 394: 1833-1838
[84] Centeno S A, Shamir J. Journal of Molecular Structure, 2008, 873: 149-159
[85] Zakel S, Rienitz O, Güttler B, Stosch R. Analyst, 2011, 136: 3956-3961
[86] Yin P G, Jiang L, Lang X F, Guo L, Shihe Y. Biosens. Bioelectron., 2011, 26: 4828-4831
[87] Lee S, Choi J, Chen L, Park B, Kyong J B, Seong G H, Choo J, Lee Y, Shin K H, Lee E K. Analytica Chimica Acta, 2007, 590: 139-144

[88] Lorén A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, Abrahamsson K. Anal. Chem., 2004, 76: 7391—7395

[89] Zhang D, Xie Y, Deb S K, Davison V J, Ben-Amotz D. Anal. Chem., 2005, 77: 3563-3569

[90] Zhang D, Ansar S M. Anal. Chem., 2010, 82: 5910-5914

[91] Deb S K, Davis B, Knudsen G M, Gudihal R, Ben-Amotz D, Davisson V J. J. Am. Chem. Soc., 2008, 130: 9624-9625

[92] Tsoutsi D, Montenegro J M, Dommershausen F, Koert U, Liz-Marzan L M, Parak W J, Alvarez-Puebla R A. ACS Nano, 2011, 5: 7539-7546

[93] Krafft C, Steiner G, Beleites C, Salzer R. J. Biophoton., 2009, 2: 13-28

[94] Pearman W F, Fountain A W. Appl. Spectrosc., 2006, 60: 356-365

[95] Shafer-Peltier K E, Haynes C L, Glucksberg M R, van Duyne R P. J. Am. Chem. Soc., 2003, 125: 588-593

[96] Driskell J, Seto A, Jones L, Jokela S, Dluhy R, Zhao Y P, Tripp R. Biosens. Bioelectron., 2008, 24: 917-922

[97] Wang H, Malvadkar N, Koytek S, Bylander J, Reeves W B, Demirel M C. J. Biomed. Opt., 2010, 15: art. no. 027004

[98] Stosch R, Henrion A, Schiel D, Güttler B. Anal. Chem., 2005, 77: 7386-7392

[99] Chen L, Choo J. Electrophoresis, 2008, 29: 1815-1828

[100] Bishnoi S W, Rozell C J, Levin C S, Gheith M K, Johnson B R, Johnson D H, Halas N J. Nano Lett., 2006, 6: 1687-1692

[101] Chon H, Lim C, Ha S M, Ahn Y, Lee E K, Chang S I, Seong G H, Choo J. Anal. Chem., 2010, 82: 5290-5295

[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[4] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[5] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[6] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[7] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[8] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[9] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[10] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[11] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[12] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[13] 唐志姣, 李攻科*, 胡玉玲*. 氮掺杂碳点的制备及在定量分析中的应用[J]. 化学进展, 2016, 28(10): 1455-1461.
[14] 饶路, 姜艳霞, 张斌伟, 游乐星, 李崭虹, 孙世刚. 乙醇电催化氧化[J]. 化学进展, 2014, 26(05): 727-736.
[15] 李志果, 张玲玲. 金表面巯基化DNA单层性能的影响因素研究[J]. 化学进展, 2014, 26(05): 846-855.