English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 698-706 DOI: 10.7536/PC121002 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

石墨烯的边界效应在电化学生物传感器中的应用

宋英攀, 冯苗, 詹红兵*   

  1. 福州大学材料科学与工程学院 福州 350108
  • 收稿日期:2012-09-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 詹红兵 E-mail:hbzhan@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51172045)、高等学校博士学科点专项科研基金(新教师类)项目( No. 20113514120006)和福建省自然科学基金项目( No. 2012J05113)资助

Application of Graphene Edge Effect in Electrochemical Biosensors

Song Yingpan, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2012-09-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

石墨烯是由底面和边界组成的,这种独特的结构赋予石墨烯很多特殊的性质,如边界上的异相电子转移速率、电容量、局域态密度和结构缺陷、功能性基团等均高于石墨烯的底面,这些固有特征对石墨烯的电化学性能有极大的促进作用,是边界效应的具体体现。本文在阐述石墨烯电化学性能边界效应的基础上,对具有不同形貌特征的石墨烯,如石墨烯纳米片、纳米毯、片晶、纳米墙、纳米纤维、纳米带、量子点等在电化学生物传感领域的具体应用进行了综述和展望。

The unique structure of basal planes and edges in graphene endows graphene specific properties, such as the much higher heterogeneous electron transfer rate, capacitance, local density of states and structural defects, functional groups of edges than basal planes. These inherent features of graphene, which have a great role in promoting its electrochemical performance, are the embodiment of the edge effect. This paper introduces the influence of edge effect on the electrochemical performance of graphene, gives a review and prospect of graphene with different morphology characteristics, such as graphene nanoflakes, nanosheets, nanoplatelets, nanowalls, nanofibers, nanoribbons, and quantum dots, applying in the electrochemical biosensing field. Contents
1 Introduction
2 Edge effect of electrochemical performances: from graphite to graphene
2.1 Edge effect of electrochemical performances in graphite
2.2 Edge effect of electrochemical performances in graphene
3 Two- and quasi two-dimensional graphene-based electrochemical biosensors
4 One- and zero-dimensional graphene-based electr-ochemical biosensors
5 Conclusion and prospect

中图分类号: 

()

[1] Clark L C, Lyons C. Ann. N. Y. Acad. Sci., 1962, 102 (1): 29-45
[2] Pumera M. Mater. Today, 2011, 14 (7/8): 308-315
[3] Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16 (1/2): 121-131
[4] Chaubey A, Malhotra B D. Biosens. Bioelectron., 2002, 17 (6/7): 441-456
[5] Andreu R, Ferapontova E E, Gorton L, Calvente J J. J. Phys. Chem. B, 2006, 111 (2): 469-477
[6] Zhao X J, Mai Z B, Kang X H, Zou X Y. Biosens. Bioelectron., 2008, 23 (7): 1032-1038
[7] Kim S N, Rusling J F, Papadimitrakopoulos F. Adv. Mater., 2007, 19 (20): 3214-3228
[8] Huang J S, Liu Y, You T Y. Anal. Methods, 2010, 2 (3): 202-211
[9] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22 (10): 1027-1036
[10] Wang J. Electroanalysis, 2005, 17 (1): 7-14
[11] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81 (1): 109-162
[12] Feng M, Sun R Q, Zhan H B, Chen Y. Nanotechnology, 2010, 21 (7): art. no. 75601
[13] Feng M, Zhan H B, Chen Y. Appl. Phys. Lett., 2010, 96 (3): art. no. 33107
[14] Pumera M. The Chemical Record, 2009, 9 (4): 211-223
[15] Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. TrAC, Trends Anal. Chem., 2010, 29 (9): 954-965
[16] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110 (1): 132-145
[17] Brownson D A C, Banks C E. Analyst, 2010, 135 (11): 2768-2778
[18] Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, Mceuen P L. Science, 2007, 315 (5811): 490-493
[19] Geim A K, Novoselov K S. Nat. Mater., 2007, 6 (3): 183-191
[20] 宋英攀 (Song Y P), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 24 (9): 1665-1673
[21] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39 (8): 3157-3180
[22] Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40 (5): 2644-2672
[23] Jiang H J. Small, 2011, 7 (17): 2413-2427
[24] Gan T, Hu S S. Microchim. Acta, 2011, 175 (1/2): 1-19
[25] Ratinac K R, Yang W, Gooding J J, Thordarson P, Braet F. Electroanalysis, 2011, 23 (4): 803-826
[26] Banks C E, Davies T J, Wildgoose G G, Compton R G. Chem. Commun., 2005, (7): 829-841
[27] Davies T J, Hyde M E, Compton R G. Angew. Chem., 2005, 117 (32): 5251-5256
[28] Rice R J, McCreery R L. Anal. Chem., 1989, 61 (15): 1637-1641
[29] McCreery R L. Chem. Rev., 2008, 108 (7): 2646-2687
[30] Keeley G P, O'Neill A, McEvoy N, Peltekis N, Coleman J N, Duesberg G S. J. Mater. Chem., 2010, 20 (36): 7864-7869
[31] Chang J L, Chang K H, Hu C C, Cheng W L, Zen J M. Electrochem. Commun., 2010, 12 (4): 596-599
[32] Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M. Chem. Eur. J., 2009, 15 (41): 10851-10856
[33] Alwarappan S, Erdem A, Liu C, Li C Z. J. Phys. Chem. C, 2009, 113 (20): 8853-8857
[34] Wang J F, Yang S L, Guo D Y, Yu P, Li D, Ye J S, Mao L Q. Electrochem. Commun., 2009, 11 (10): 1892-1895
[35] Wu J F, Xu M Q, Zhao G C. Electrochem. Commun., 2010, 12 (1): 175-177
[36] Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18 (21): 3506-3514
[37] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81 (6): 2378-2382
[38] Wu P, Shao Q, Hu Y J, Jin J, Yin Y J, Zhang H, Cai C X. Electrochim. Acta, 2010, 55 (28): 8606-8614
[39] Wang Y, Li Y M, Tang L H, Lu J, Li J H. Electrochem. Commun., 2009, 11 (4): 889-892
[40] Liu S, Tian J Q, Wang L, Luo Y L, Lu W B, Sun X P. Biosens. Bioelectron., 2011, 26 (11): 4491-4496
[41] Akhavan O, Ghaderi E, Rahighi R. ACS Nano, 2012, 6 (4): 2904-2916
[42] Ambrosi A, Sasaki T, Pumera M. Chem. Asian J., 2010, 5 (2): 266-271
[43] Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12 (31): 8943-8947
[44] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656 (1/2): 285-288
[45] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13 (1): 31-33
[46] Si Y C, Samulski E T. Nano Lett., 2008, 8 (6): 1679-1682
[47] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. J. Mater. Chem., 2006, 16 (2): 155-158
[48] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano, 2008, 3 (2): 101-105
[49] Li X L, Wang X R, Zhang L, Lee S W, Dai H J. Science, 2008, 319 (5867): 1229-1232
[50] Xu G Y, Torres C M, Tang J S, Bai J W, Song E B, Huang Y, Duan X F, Zhang Y G, Wang K L. Nano Lett., 2011, 11 (3): 1082-1086
[51] 郑小青 (Zheng X Q), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 24(12): 2320-2329
[52] 王娇娇 (Wang J J), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 2013, 25(1): 86-94
[53] Shen J H, Zhu Y H, Yang X L, Li C Z. Chem. Commun., 2012, 48 (31): 3686-3699

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[8] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[9] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[10] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[11] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[12] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[13] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[14] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[15] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.