English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2517-2539 DOI: 10.7536/PC220340 前一篇   后一篇

• 综述 •

锂硒电池研究进展

黄祺1, 邢震宇1,2,*()   

  1. 1 华南师范大学化学学院 广州 510006
    2 环境理论化学教育部重点实验室 广州 510006
  • 收稿日期:2022-03-30 修回日期:2022-05-23 出版日期:2022-11-24 发布日期:2022-07-20
  • 通讯作者: 邢震宇
  • 作者简介:

    邢震宇 2012年吉林大学取得化学学士学位, 2016年美国Oregon State University取得化学博士学位, 之后在加拿大University of Waterloo从事博士后研究, 自2018年被引进华南师范大学工作. 主要研究方向集中于基于金属热反应的材料制备以及其在能源存储领域的应用, 尤其在碳材料和硫化锂材料的制备方面取得了系统性的研究进展。

  • 基金资助:
    国家自然科学基金青年基金项目(22002045); 广东省基础与应用基础研究基金自然科学基金项目(2020A1515011549); 广州市基础与应用基础研究项目(202102020396)

Advances in Lithium Selenium Batteries

Qi Huang1, Zhenyu Xing1,2()   

  1. 1 School of Chemistry, South China Normal University,Guangzhou 510006, China
    2 Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education,Guangzhou 510006, China
  • Received:2022-03-30 Revised:2022-05-23 Online:2022-11-24 Published:2022-07-20
  • Contact: Zhenyu Xing
  • Supported by:
    National Natural Science Foundation of China(22002045); Guangdong Basic and Applied Basic Research Foundation(2020A1515011549); Basic Research and Applicable Basic Research in Guangzhou City(202102020396)

锂硒电池因其高能量密度、高体积比容量和适中的输出电压等优点而成为备受关注的二次电池。然而,由于穿梭效应、较差的导电性、低活性物质利用率以及较快的容量衰减等问题,锂硒电池的实际应用受到了极大的阻碍。近些年,研究人员深入研究了锂硒电池的充放电机理,同时也探索了各种碳材料、金属化合物等新材料作为正极载体、中间层和电解液添加剂对于电化学性能的影响。本文系统地总结了锂硒电池的电极材料、中间层和添加剂等的研究进展,并且重点介绍了在充放电机理和系统优化方面的进步,以期为锂硒电池的进一步发展提供新的思路。

Lithium-selenium batteries have attracted much attention as secondary batteries due to their high energy density, high specific volumetric capacity, and moderate output voltage. However, the practical application of Li-Se batteries is hindered by the shuttle effect, poor conductivity, low active material utilization and fast capacity fading. In recent years, researchers investigated the charge-discharge mechanism of Li-Se batteries thoroughly, and studied effects on electrochemical performance from various new materials, including carbon materials and metal compounds, as cathode host, interlayer and electrolyte additives at the same time. This review systematically summarized the research progress of electrode materials, interlayer and electrolyte additives, with focus on charge-discharge mechanism and system optimization. We hope this review could provide perspective for the further development of Li-Se batteries.

()
图1 (a)硒、硫、钴酸锂、磷酸铁锂和三元材料正极理论容量; (b)锂硒电池近几年发表论文数量; (c)高性能锂硒电池结构组成
Fig. 1 (a) Theoretical capacity of Se, S, LiCoO2, LiFePO4, Ternary material cathodes; (b) the number of publications on lithium-selenium batteries in recent years; (c) schematic of the structure composition for advanced Li-Se batteries
图2 (a) 锂硒电池首圈充放电过程; (b) c/a-Se的初始充放电曲线[43]; (c) Li/SeS2-C电池的循环性能[44]; (d) Li-SeS2电池在醚类电解液中的循环曲线[45]; (e) 采用PVDF黏结剂的Li/SeS2电池在醚类电解质中的循环伏安曲线[45]; (f) Li+在Sex狭缝孔隙中运输的剖面图和主视图[51]; (g) 硒分子直接生成Li2Se过程中每个电子释放的能量[51]; (h) 界面锂化机理示意图[53]; (i) EC-EMC电解液、不溶性Se、Li2Se、Se与Li2Se两者混合的图片[22]
Fig. 2 (a) Initial charge-discharge process of lithium-selenium battery. (b) Initial charge-discharge curves of the c/a-Se[43]. (c) Cycling performance of Li/SeS2-C systems[44]. (d) Cycle performance of Li cells with SeS2-carbon composite as cathodes in ether-based electrolyte[45]. (e) Cyclic voltammetry curves of Li/SeS2 batteries in ether-based electrolyte with PVDF binder[45]; (f) Sectional view and front view showing the Li+ migration in a Sex preoccupied slit pore[51]. (g) Energy released by each electron in the direct formation of Li2Se from selenium molecules[51]. (h) Schematic illustration of the interfacial lithiation mechanism[53]. (i) Photograph of electrolyte solvent EC-EMC alone, with insoluble Se, with Li2Se, and with a combination of the two[22]
图3 锂硒电池现存问题
Fig. 3 Existing problems in lithium-selenium batteries
图4 (a)新型盐烘法制备Se/MnMC-B示意图[115]; (b) Se粉、CMK-3、Se/CMK-3的XRD图谱[122]; (c) Se粉、CMK-3、Se/CMK-3的拉曼光谱[122]; (d) Se@PCNFs的电压曲线[123]; (e) TEM HAADF图像及Se@HHCS中C、Se、O元素的EDXS图像[124]; (f~h) Se纳米线、Se/PANI、G@Se/PANI的TEM图像[41]
Fig. 4 (a) Illustration of the strategy behind the baked-in-salt approach for confining selenium[115]; (b) XRD patterns and (c) Raman spectra of the CMK-3, Se/CMK-3 composite and Se powder[122]; (d) Voltage profiles of Se@PCNFs[123]; (e) TEM HAADF image and associated EDXS maps of C, Se and O, respectively for Se@HHCS[124]; (f-h) TEM images of Se nanowires, Se/PANI and G@Se/PANI[41]
图5 (a) Se@KF65复合材料的制备示意图[138]; (b)双层空心Se@CNx纳米带的TGA曲线[139]; (c, d) Se、Se-treated、HDHPC和Se50/HDHPC复合材料的XRD图谱和拉曼光谱[140]; (e, f) Se50/SO-HPC3复合材料的SEM和TEM图像[141]; (g) HPCNBs电极在电流密度为500mA/g下的循环性能[142]
Fig. 5 (a) Schematic illustration for the preparation of Se@KF65 composite[138]. (b) TGA curve of hollow double-shell Se@CNx nanobelts[139]. (c) XRD patterns and (d) Raman spectra of pristine Se, Se-treated, HDHPC, and Se50/HDHPC composites[140]; (e) SEM and (f) TEM images of the synthesized Se50/SO-HPC3 composite[141]. (g) Cycling performance at a current density of 500mAh/g of the HPCNBs electrode[142]
图6 两种新型一维纳米结构的形成机理[151]
Fig. 6 Formation mechanism of two novel one-dimensional nanostructures[151]
图7 (a) Se和Se-TiO2/NFF电极在1.0~3.0 V电压范围内0.5 C下的首圈充/放电曲线[164]; (b) Se-TiO2/NFF和Se在不同电流密度下的倍率特性[164]
Fig. 7 (a) First discharge/charge curves of Se and Se-TiO2/NFF electrodes at 0.5 C in a voltage range of 1.0-3.0 V[164]. (b) Rate properties of Se-TiO2/NFF and Se at various current rates
图8 (a) CoS2@LRC/SeS2相对于LRC/SeS2的优势[180]; (b) NiCo2S4@NC-SeS2正极的嵌锂过程[181]
Fig. 8 (a) Proposed advantages of CoS2@LRC/SeS2 over LRC/SeS2[180]; (b) lithiation of NiCo2S4@NC-SeS2 cathode[181]
图9 (a) 带正电的屏蔽层将排斥进入的Li+,迫使Li+进一步沉积到负极的邻近区域,直到形成光滑的沉积层[190];在电流密度为0.1 mA/cm2时,在CsPF6浓度为 (b) 0 和 (c) 0.01 mol·L-1的1 mol·L-1 LiPF6/PC电解液中沉积的锂膜SEM图像[190]; 锂金属在(d)平面集流体和(e)三维集流体上的电化学沉积过程[192]; (f) 层状Li/还原氧化石墨烯复合电极合成过程[193]
Fig. 9 (a) The positively charged shield will repel Li+ incoming from the protrusion forcing further Li+ deposition to adjacent regions of the anode until a smooth deposition layer is formed[190]; SEM images of the morphologies of Li films deposited in electrolyte of 1 mol·L-1 LiPF6/PC with CsPF6 concentrations of (b) 0 mol·L-1 and (c) 0.01 mol·L-1, at a current density of 0.1 mA/cm2[190]; the electrochemical deposition processes of Li metal on (d) planar current collector and (e) 3D current collector[192]; (f) the synthesis process of Li/RGO composite electrode[193]
图10 (a,b) TPB-DMTP-COF双功能分离涂层材料分子结构及捕获多硫化物/多硒化物的机理示意图[200]; (c~e) 在0.5 C下,(正极80%硒)电池前三圈循环的CV曲线、恒流充放电曲线和循环性能[201]; (f) Co-N-C@C中间层的结构设计及其捕获LiPSs/LiPSes的机理示意图[209]; (g) Se/PCC正极和PAN中间层的制备工艺及组装锂硒电池的简要模型[208]; (h) 无中间层[211],(i)有GS中间层[211],(j) 有GST中间层[211]的电池内部结构示意图
Fig. 10 (a,b) Molecular structure of TPB-DMTP-COF bifunctional separation coating material and mechanism for capturing polysulfide/polyselenide[200]; (c) the first three CV curves, (d) galvanostatic discharge and charge profiles and (e) cycling performance of Se-80% cathode based battery at 0.5 C[201]; (f) the structural design of Co-N-C@C interlayer and the LiPSs/LiPSes trapping mechanism[209]; (g) Preparation process for the Se/PCC cathode and PAN interlayer, and the brief model of the assembled Li-Se battery[208]; Schematic illustration of the structure composition of the cells (h) without interlayer, (i) with GS interlayer, and (j) with GST interlayer[211]
图11 (a) 正极表面的成膜机理和循环500圈后的SEM图像[219]; (b) 横截面SEM图像显示了从分隔层到正极的多层结构[222]; (c) PF 5 -信号的三维空间构型[222]; (d) 不同LiPF6浓度电解液聚合程度的光学图像[222]; (e,f) Li-Se电池在醚基LE和GPE电解质中的电化学示意图[223]; (g) 在0.2 C下充放电的不同阶段收集的Se-KB正极与混合电解液的SEM/EDX图像[225]; (h) 基于原位拉曼光谱轮廓的容量示意图[226]; (i) 不同充放电状态下的原位拉曼光谱[226]
Fig. 11 (a) The film formation mechanism of the cathode surface and the SEM image after 500 cycles[219]. (b) Cross-sectional SEM image illustrating multilayered structure from the separator to the cathode[222]. (c) Three-dimensional configuration of PF 5 - signal[222]. (d) Optical images showing the various polymerization degrees of liquid electrolyte with different LiPF6 concentrations[222]. The electrochemistry of Li-Se batteries with ether-based LE (e) and GPE (f)[223]. (g) SEM/EDX images of the Se-KB cathode with hybrid electrolytes collected at various stages of discharge and charge at 0.2 C[225]. (h) Capacity dependent in situ Raman spectral contour plots[226]. (i) in situ Raman spectra at different discharge/charge states[226]
表1 近些年锂硒电池正极材料及其电化学性能
Table 1 Electrochemical performances of reported lithium-selenium batteries cathode materials in recent years
图12 近些年锂硒电池正极材料及其电化学性能
Fig. 12 Electrochemical performances of reported lithium-selenium batteries cathode materials in recent years
[1]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535     URL    
[2]
Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. ACS Cent. Sci., 2020, 6(7): 1095.

doi: 10.1021/acscentsci.0c00449     URL    
[3]
Gao X J, Yang X F, Wang S Z, Sun Q, Zhao C T, Li X N, Liang J W, Zheng M, Zhao Y, Wang J W, Li M S, Li R, Sham T K, Sun X L. J. Mater. Chem. A, 2020, 8(1): 278.

doi: 10.1039/C9TA10623E     URL    
[4]
Lei Z Y, Lei Y Y, Liang X M, Yang L, Feng J W. J. Power Sources, 2020, 473: 228611.

doi: 10.1016/j.jpowsour.2020.228611     URL    
[5]
Zhao P, Shiraz M H A, Zhu H Z, Liu Y H, Tao L, Liu J. Electrochimica Acta, 2019, 325: 134931.

doi: 10.1016/j.electacta.2019.134931     URL    
[6]
Zheng Z J, Su Q, Xu H Y, Zhang Q, Ye H, Wang Z B. Mater. Lett., 2019, 244: 134.

doi: 10.1016/j.matlet.2019.02.076     URL    
[7]
Park G D, Kim J H, Lee J K, Kang Y C. J. Mater. Chem. A, 2018, 6(43): 21410.

doi: 10.1039/C8TA08727J     URL    
[8]
Pang P P, Tan X X, Wang Z, Cai Z J, Nan J M, Xing Z Y, Li H. Electrochimica Acta, 2021, 365: 137380.

doi: 10.1016/j.electacta.2020.137380     URL    
[9]
Pang P P, Wang Z, Deng Y M, Nan J M, Xing Z Y, Li H. ACS Appl. Mater. Interfaces, 2020, 12(24): 27339.

doi: 10.1021/acsami.0c02459     URL    
[10]
Pang P P, Wang Z, Tan X X, Deng Y M, Nan J M, Xing Z Y, Li H. Electrochimica Acta, 2019, 327: 135018.

doi: 10.1016/j.electacta.2019.135018     URL    
[11]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.

doi: 10.1039/C7CS00863E     URL    
[12]
Kundu D P, Krumeich F, Nesper R. J. Power Sources, 2013, 236: 112.

doi: 10.1016/j.jpowsour.2013.02.050     URL    
[13]
Gu X X, Xin L B, Li Y, Dong F, Fu M, Hou Y L. Nano Micro Lett., 2018, 10(4): 59.

doi: 10.1007/s40820-018-0213-5     URL    
[14]
Cui Y, Zhou X W, Guo W, Liu Y Z, Li T Y, Fu Y Z, Zhu L K. Batter. Supercaps, 2019, 2(9): 784.

doi: 10.1002/batt.201900050     URL    
[15]
Chen C, Zhao C H, Hu Z B, Liu K Y. Funct. Mater. Lett., 2017, 10(2): 1650074.

doi: 10.1142/S1793604716500740     URL    
[16]
Lim H D, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K. Chem. Soc. Rev., 2017, 46(10): 2873.

doi: 10.1039/C6CS00929H     URL    
[17]
Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Adv. Mater., 2018, 30(1): 1704162.

doi: 10.1002/adma.201704162     URL    
[18]
Fang R P, Zhao S Y, Sun Z H, Wang W, Cheng H M, Li F. Advanced Materials, 2017, 29(48): 25.
[19]
He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.
[20]
Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Adv. Mater., 2020, 32(31): 2002403.

doi: 10.1002/adma.202002403     URL    
[21]
Yu S L, Cai W L, Chen L, Song L X, Song Y Z. J. Energy Chem., 2021, 55: 533.

doi: 10.1016/j.jechem.2020.07.020     URL    
[22]
Cui Y J, Abouimrane A, Sun C J, Ren Y, Amine K. Chem. Commun., 2014, 50(42): 5576.

doi: 10.1039/C4CC00934G     URL    
[23]
Shen C L, Wang T, Xu X, Tian X C. Electrochimica Acta, 2020, 349: 136331.

doi: 10.1016/j.electacta.2020.136331     URL    
[24]
Jia M, Niu Y B, Mao C P, Liu S G, Zhang Y, Bao S J, Xu M W. J. Colloid Interface Sci., 2017, 490: 747.

doi: 10.1016/j.jcis.2016.12.012     URL    
[25]
Gu X X, Lai C. Energy Storage Mater., 2019, 23: 190.
[26]
Hu J L, Zhang C C, Zhang L Z. J. Alloys Compd., 2019, 806: 146.

doi: 10.1016/j.jallcom.2019.07.224     URL    
[27]
Sun J M, Du Z Z, Liu Y H, Ai W, Wang K, Wang T, Du H F, Liu L, Huang W. Adv. Mater., 2021, 33(10): 2170073.

doi: 10.1002/adma.202170073     URL    
[28]
Singh A, Kalra V. J. Mater. Chem. A, 2019, 7(19): 11613.

doi: 10.1039/C9TA00327D     URL    
[29]
Li J, Zhang C, Wu C J, Tao Y, Zhang L, Yang Q H. Rare Met., 2017, 36(5): 425.

doi: 10.1007/s12598-017-0903-z     URL    
[30]
Zhang S F, Wang W P, Xin S, Ye H, Yin Y X, Guo Y G. ACS Appl. Mater. Interfaces, 2017, 9(10): 8759.

doi: 10.1021/acsami.6b16708     URL    
[31]
Liu Y X, Si L, Du Y C, Zhou X S, Dai Z H, Bao J C. J. Phys. Chem. C, 2015, 119(49): 27316.

doi: 10.1021/acs.jpcc.5b09553     URL    
[32]
Xu J T, Ma J M, Fan Q H, Guo S J, Dou S X. Adv. Mater., 2017, 29(28): 1606454.

doi: 10.1002/adma.201606454     URL    
[33]
Du H, Feng S H, Luo W, Zhou L, Mai L Q. J. Mater. Sci. Technol., 2020, 55: 1.

doi: 10.1016/j.jmst.2020.01.001     URL    
[34]
Plaza-Rivera C O, Walker B A, Tran N X, Viggiano R P, Dornbusch D A, Wu J J, Connell J W, Lin Y. ACS Appl. Energy Mater., 2020, 3(7): 6374.

doi: 10.1021/acsaem.0c00582     URL    
[35]
Aboonasr Shiraz M H, Zhu H Z, Liu Y L, Sun X L, Liu J. J. Power Sources, 2019, 438: 227059.

doi: 10.1016/j.jpowsour.2019.227059     URL    
[36]
Ge J M, Zhang Q F, Liu Z M, Yang H G, Lu B G. J. Alloy. Compd., 2019, 8(10): 6.
[37]
Liu S C, Lu Q P, Zhao C H. Solid State Sci., 2018, 84: 15.

doi: 10.1016/j.solidstatesciences.2018.08.005     URL    
[38]
Lu L, Zhang L, Zeng H, Xu B, Wang L M, Li Y M. J. Alloys Compd., 2017, 695: 1294.

doi: 10.1016/j.jallcom.2016.10.259     URL    
[39]
Jia M, Mao C P, Niu Y B, Hou J K, Liu S G, Bao S J, Jiang J, Xu M W, Lu Z S. RSC Adv., 2015, 5(116): 96146.

doi: 10.1039/C5RA19000B     URL    
[40]
Sun K L, Zhao H B, Zhang S Q, Yao J, Xu J Q. Ionics, 2015, 21(9): 2477.

doi: 10.1007/s11581-015-1451-x     URL    
[41]
Zhang J J, Xu Y H, Fan L, Zhu Y C, Liang J W, Qian Y T. Nano Energy, 2015, 13: 592.

doi: 10.1016/j.nanoen.2015.03.028     URL    
[42]
Saji V S, Lee C W. RSC Adv., 2013, 3(26): 10058.

doi: 10.1039/c3ra40678d     URL    
[43]
Zhou X M, Gao P, Sun S C, Bao D, Wang Y, Li X B, Wu T T, Chen Y J, Yang P P. Chem. Mater., 2015, 27(19): 6730.

doi: 10.1021/acs.chemmater.5b02753     URL    
[44]
Abouimrane A, Dambournet D, Chapman K W, Chupas P J, Weng W, Amine K. J. Am. Chem. Soc., 2012, 134(10): 4505.

doi: 10.1021/ja211766q     pmid: 22364225
[45]
Cui Y J, Abouimrane A, Lu J, Bolin T, Ren Y, Weng W, Sun C J, Maroni V A, Heald S M, Amine K. J. Am. Chem. Soc., 2013, 135(21): 8047.

doi: 10.1021/ja402597g     URL    
[46]
Zhou J, Chen M X, Wang T, Li S Y, Zhang Q S, Zhang M, Xu H J, Liu J L, Liang J F, Zhu J, Duan X F. iScience, 2020, 23(3): 100919.

doi: 10.1016/j.isci.2020.100919     URL    
[47]
Pongilat R, Nallathamby K. J. Phys. Chem. C, 2019, 123(10): 5881.

doi: 10.1021/acs.jpcc.8b12396    
[48]
Feng N X, Xiang K X, Xiao L, Chen W H, Zhu Y R, Liao H Y, Chen H. J. Alloys Compd., 2019, 786: 537.

doi: 10.1016/j.jallcom.2019.01.348     URL    
[49]
Zhao C H, Hu Z B, Luo J S. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 560: 69.

doi: 10.1016/j.colsurfa.2018.10.003     URL    
[50]
Mukkabla R, Kuldeep, Deepa M. ACS Appl. Energy Mater., 2018, 1(12): 6964.

doi: 10.1021/acsaem.8b01382     URL    
[51]
Xin S, Yu L, You Y, Cong H P, Yin Y X, Du X L, Guo Y G, Yu S H, Cui Y, Goodenough J B. Nano Lett., 2016, 16(7): 4560.

doi: 10.1021/acs.nanolett.6b01819     URL    
[52]
Yang C P, Xin S, Yin Y X, Ye H, Zhang J, Guo Y G. Angew. Chem. Int. Ed., 2013, 52(32): 8363.

doi: 10.1002/anie.201303147     URL    
[53]
Li Y H, Lu J X, Cheng X P, Shi H F, Zhang Y F. Nano Energy, 2018, 48: 441.

doi: 10.1016/j.nanoen.2018.03.004     URL    
[54]
Yu X W, Manthiram A. Energy Environ. Sci., 2018, 11(3): 527.

doi: 10.1039/C7EE02555F     URL    
[55]
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G X. Chem, 2019, 5(9): 2326.

doi: 10.1016/j.chempr.2019.05.009     URL    
[56]
Xu G L, Liu J Z, Amine R, Chen Z H, Amine K. ACS Energy Lett., 2017, 2(3): 605.

doi: 10.1021/acsenergylett.6b00642     URL    
[57]
Gu X X, Tang T Y, Liu X T, Hou Y L. J. Mater. Chem. A, 2019, 7(19): 11566.

doi: 10.1039/C8TA12537F     URL    
[58]
Huang K, Zhou P, Chen H N. Energy Technol., 2021, 9(8): 2100371.

doi: 10.1002/ente.202100371     URL    
[59]
Jin J, Tian X C, Srikanth N, Kong L B, Zhou K. J. Mater. Chem. A, 2017, 5(21): 10110.

doi: 10.1039/C7TA01384A     URL    
[60]
Soochan K, Misuk C, Youngkwan L. Adv. Energy Mater., 2020, 105: 1903477.
[61]
Jie Y L, Ren X D, Cao R G, Cai W B, Jiao S H. Adv. Funct. Mater., 2020, 30(25): 1910777.

doi: 10.1002/adfm.201910777     URL    
[62]
Ye H, Yin Y X, Zhang S F, Guo Y G. J. Mater. Chem. A, 2014, 2(33): 13293.

doi: 10.1039/C4TA02017K     URL    
[63]
Xia Y, Lu C W, Fang R Y, Huang H, Gan Y P, Liang C, Zhang J, He X P, Zhang W K. Electrochem. Commun., 2019, 99: 16.

doi: 10.1016/j.elecom.2018.12.013     URL    
[64]
Lai Y Q, Yang F H, Zhang Z A, Jiang S F, Li J. RSC Adv., 2014, 4(74): 39312.

doi: 10.1039/C4RA06856D     URL    
[65]
Li Z, Yuan L X, Yi Z Q, Liu Y, Huang Y H. Nano Energy, 2014, 9: 229.

doi: 10.1016/j.nanoen.2014.07.012     URL    
[66]
Liu L L, Hou Y Y, Yang Y Q, Li M X, Wang X W, Wu Y P. RSC Adv., 2014, 4(18): 9086.

doi: 10.1039/C3RA48034H     URL    
[67]
Bucur C B, Bonnick P, Jones M, Muldoon J. Sustain. Energy Fuels, 2018, 2(4): 759.

doi: 10.1039/C8SE00017D     URL    
[68]
Li J, Zhao X X, Zhang Z A, Lai Y Q. J. Alloys Compd., 2015, 619: 794.

doi: 10.1016/j.jallcom.2014.09.099     URL    
[69]
Liu Y X, Si L, Zhou X S, Liu X, Xu Y, Bao J C, Dai Z H. J. Mater. Chem. A, 2014, 2(42): 17735.

doi: 10.1039/C4TA03141E     URL    
[70]
Zhang J J, Fan L, Zhu Y C, Xu Y H, Liang J W, Wei D H, Qian Y T. Nanoscale, 2014, 6(21): 12952.

doi: 10.1039/C4NR03705G     URL    
[71]
Luo C, Xu Y H, Zhu Y J, Liu Y H, Zheng S Y, Liu Y, Langrock A, Wang C S. ACS Nano, 2013, 7(9): 8003.

doi: 10.1021/nn403108w     URL    
[72]
Jin Y, Liu K, Lang J L, Jiang X, Zheng Z K, Su Q H, Huang Z Y, Long Y Z, Wang C G, Wu H, Cui Y. Joule, 2020, 4(1): 262.

doi: 10.1016/j.joule.2019.09.003     URL    
[73]
Tang S W, Liu C C, Sun W, Zhang X, Shen D, Dong W, Yang S B. Nanoscale, 2021, 13(38): 16316.

doi: 10.1039/D1NR03406E     URL    
[74]
Hu J L, Wang B, Zhang L Z. J. Alloy. Compd., 2021, 8(86): 8.
[75]
Cao Y Q, Lei F F, Li Y L, Qiu S L, Wang Y, Zhang W, Zhang Z T. J. Mater. Chem. A, 2021, 9(29): 16196.

doi: 10.1039/D1TA04529F     URL    
[76]
Ye W K, Li W Y, Wang K, Yin W H, Chai W W, Qu Y, Rui Y C, Tang B. J. Phys. Chem. C, 2019, 123(4): 2048.

doi: 10.1021/acs.jpcc.8b10598     URL    
[77]
Yang J, Gao H C, Ma D J, Zou J S, Lin Z, Kang X W, Chen S W. Electrochimica Acta, 2018, 264: 341.

doi: 10.1016/j.electacta.2018.01.105     URL    
[78]
He J R, Lv W Q, Chen Y F, Xiong J, Wen K C, Xu C, Zhang W L, Li Y R, Qin W, He W D. J. Power Sources, 2017, 363: 103.

doi: 10.1016/j.jpowsour.2017.07.065     URL    
[79]
Li X W, Xiang Y, Qu B H, Su S J. Mater. Lett., 2017, 203: 1.

doi: 10.1016/j.matlet.2017.05.085     URL    
[80]
Li Z Q, Yin L W. Nanoscale, 2015, 7(21): 9597.

doi: 10.1039/C5NR00903K     URL    
[81]
Wang H Q, Li S, Chen Z X, Liu H K, Guo Z P. RSC Adv., 2014, 4(106): 61673.

doi: 10.1039/C4RA10967H     URL    
[82]
Zhang Q, Cai L T, Liu G Z, Li Q H, Jiang M, Yao X Y. ACS Appl. Mater. Interfaces, 2020, 12(14): 16541.

doi: 10.1021/acsami.0c01996     URL    
[83]
Seungmin L, Haeun L, Naram H, Jung Tae L, Jaehan J, KwangSup E. Adv. Funct. Mater., 2020, 30(19): 2000028.

doi: 10.1002/adfm.202000028     URL    
[84]
Lei Y Y, Liang X M, Yang L, Jiang P, Lei Z Y, Wu S S, Feng J W. J. Mater. Chem. A, 2020, 8(8): 4376.

doi: 10.1039/C9TA13753J     URL    
[85]
Qu Y H, Zhang Z A, Lai Y Q, Liu Y X, Li J. Solid State Ion., 2015, 274: 71.

doi: 10.1016/j.ssi.2015.03.007     URL    
[86]
Liu L, Wei Y J, Zhang C F, Zhang C, Li X, Wang J T, Ling L C, Qiao W M, Long D H. Electrochimica Acta, 2015, 153: 140.

doi: 10.1016/j.electacta.2014.11.199     URL    
[87]
Luo C, Wang J J, Suo L M, Mao J F, Fan X L, Wang C S. J. Mater. Chem. A, 2015, 3(2): 555.

doi: 10.1039/C4TA04611K     URL    
[88]
Zheng Y, Zheng S S, Xue H G, Pang H. J. Mater. Chem. A, 2019, 7(8): 3469.

doi: 10.1039/c8ta11075a    
[89]
Hao J W, Xu X K, You H R, Min H H, Liu X M, Yang H. Chem. Eng. J., 2021, 418: 129475.

doi: 10.1016/j.cej.2021.129475     URL    
[90]
Cong J W, Zheng Z J, Hao J W, You H R, Liu X M, Yang H. J. Alloys Compd., 2021, 867: 159089.

doi: 10.1016/j.jallcom.2021.159089     URL    
[91]
Bui H T, Jang H, Ahn D, Han J, Sung M, Kutwade V, Patil M, Sharma R, Han S H. Electrochimica Acta, 2021, 368: 137556.

doi: 10.1016/j.electacta.2020.137556     URL    
[92]
Liu J, Lan D Y, Huang X Y, Zhang F T, Huang A Q, Xiao Y X, Zhao Z Z, Liu L Y, Ke X, Shi Z C, Guo Z P. J. Electrochem. Soc., 2018, 166(3): A5259.

doi: 10.1149/2.0411903jes     URL    
[93]
Luo R J, Lu Y, Hou X Y, Yu Q H, Peng T, Yan H L, Liu X M, Kim J K, Luo Y S. J. Solid State Electrochem., 2017, 21(12): 3611.

doi: 10.1007/s10008-017-3696-y     URL    
[94]
Lee J T, Kim H, Oschatz M, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Kaskel S, Yushin G. Adv. Energy Mater., 2015, 5(1): 1400981.

doi: 10.1002/aenm.201400981     URL    
[95]
Luo C, Zhu Y J, Wen Y, Wang J J, Wang C S. Adv. Funct. Mater., 2014, 24(26): 4082.

doi: 10.1002/adfm.201303909     URL    
[96]
Chen X, Xu L H, Zeng L X, Wang Y Y, Zeng S H, Li H Z, Li X Y, Qian Q R, Wei M D, Chen Q H. Dalton Trans., 2020, 49(41): 14536.

doi: 10.1039/d0dt03035j     pmid: 33048101
[97]
Wang X W, Tan Y Q, Liu Z X, Fan Y Q, Li M N, Younus H A, Duan J F, Deng H Q, Zhang S G. Small, 2020, 16(17): 2000266.

doi: 10.1002/smll.202000266     URL    
[98]
Jin W W, Li H J, Zou J Z, Inguva S, Zhang Q, Zeng S Z, Xu G Z, Zeng X R. Mater. Lett., 2019, 252: 211.

doi: 10.1016/j.matlet.2019.05.131     URL    
[99]
Kim W, Lee J, Lee S, Eom K, Pak C, Kim H J. Appl. Surf. Sci., 2020, 512: 145632.

doi: 10.1016/j.apsusc.2020.145632     URL    
[100]
Xue P, Zhai Y J, Wang N N, Zhang Y H, Lu Z X, Liu Y L, Bai Z C, Han B K, Zou G F, Dou S X. Chem. Eng. J., 2020, 392: 123676.

doi: 10.1016/j.cej.2019.123676     URL    
[101]
Mukkabla R, Deshagani S, Deepa M, Shivaprasad S M, Ghosal P. Electrochimica Acta, 2018, 283: 63.

doi: 10.1016/j.electacta.2018.06.130     URL    
[102]
Guo J, Wang Q S, Qi C, Jin J, Zhu Y J, Wen Z Y. Chem. Commun., 2016, 52(32): 5613.

doi: 10.1039/C6CC00638H     URL    
[103]
Zhang L L, Wang Y J, Niu Z Q, Chen J. Carbon, 2019, 141: 400.

doi: 10.1016/j.carbon.2018.09.067     URL    
[104]
Jin W W, Li H J, Zou J Z, Zhang Q, Inguva S, Zeng S Z, Xu G Z, Zeng X R. Microporous Mesoporous Mater., 2020, 306: 110438.

doi: 10.1016/j.micromeso.2020.110438     URL    
[105]
Jayan R, Islam M M. Nanoscale, 2020, 12(26): 14087.

doi: 10.1039/D0NR02296A     URL    
[106]
Ye W K, Wang K, Yin W H, Chai W W, Rui Y C, Tang B. Dalton Trans., 2019, 48(27): 10191.

doi: 10.1039/C9DT01961H     URL    
[107]
Cheng Q X, Qin L Z, Ke C X, Zhou J N, Lin J, Lin X M, Zhang G, Cai Y P. RSC Adv., 2019, 9(26): 14750.

doi: 10.1039/C9RA02163A     URL    
[108]
Li X W, Li S Y, Zhang Z X, Liu C Q, Qu B H, Pu J X. Mater. Lett., 2018, 220: 86.

doi: 10.1016/j.matlet.2018.03.004     URL    
[109]
Hong Y J, Kang Y C. Carbon, 2017, 111: 198.

doi: 10.1016/j.carbon.2016.09.069     URL    
[110]
Yi Z Q, Yuan L X, Sun D, Li Z, Wu C, Yang W J, Wen Y W, Shan B, Huang Y H. J. Mater. Chem. A, 2015, 3(6): 3059.

doi: 10.1039/C4TA06141A     URL    
[111]
Qu Y H, Zhang Z A, Jiang S F, Wang X W, Lai Y Q, Liu Y X, Li J. J. Mater. Chem. A, 2014, 2(31): 12255.

doi: 10.1039/C4TA02563F     URL    
[112]
Hu J L, Ren Y L, Zhang L Z. J. Power Sources, 2020, 455: 227955.

doi: 10.1016/j.jpowsour.2020.227955     URL    
[113]
Dai F, Shen J M, Dailly A, Balogh M P, Lu P, Yang L, Xiao J, Liu J, Cai M. Nano Energy, 2018, 51: 668.

doi: 10.1016/j.nanoen.2018.07.015     URL    
[114]
Liu T, Dai C L, Jia M, Liu D Y, Bao S J, Jiang J, Xu M W, Li C M. ACS Appl. Mater. Interfaces, 2016, 8(25): 16063.

doi: 10.1021/acsami.6b04060     URL    
[115]
Li X N, Liang J W, Hou Z G, Zhang W Q, Wang Y, Zhu Y C, Qian Y T. Adv. Funct. Mater., 2015, 25(32): 5229.

doi: 10.1002/adfm.201501956     URL    
[116]
Wang N N, Hong Y, Liu T X, Wang Q, Huang J R. Ceram. Int., 2021, 47(1): 899.

doi: 10.1016/j.ceramint.2020.08.202     URL    
[117]
Wu F X, Lee J T, Xiao Y R, Yushin G. Nano Energy, 2016, 27: 238.

doi: 10.1016/j.nanoen.2016.07.012     URL    
[118]
Ma C H, Wang H L, Zhao X S, Wang X, Miao Y Q, Cheng L, Wang C Z, Wang L, Yue H J, Zhang D. Energy Technol., 2020, 8(9): 1901445.

doi: 10.1002/ente.201901445     URL    
[119]
Kim W, Lee J, Lee S, Eom K, Pak C, Kim H J. Carbon, 2020, 170: 236.

doi: 10.1016/j.carbon.2020.07.039     URL    
[120]
Zhao C H, Fang S Z, Hu Z B, Qiu S E, Liu K Y. J. Nanoparticle Res., 2016, 18(7): 201.

doi: 10.1007/s11051-016-3513-z     URL    
[121]
Zhang Z A, Jiang S F, Lai Y Q, Li J M, Song J X, Li J. J. Power Sources, 2015, 284: 95.

doi: 10.1016/j.jpowsour.2015.03.019     URL    
[122]
Zheng C, Liu M Y, Chen W Q, Zeng L X, Wei M D. J. Mater. Chem. A, 2016, 4(35): 13646.

doi: 10.1039/C6TA05029H     URL    
[123]
Zeng L C, Zeng W C, Jiang Y, Wei X, Li W H, Yang C L, Zhu Y W, Yu Y. Adv. Energy Mater., 2015, 5(4): 1401377.

doi: 10.1002/aenm.201401377     URL    
[124]
Wang Y X, Hao H C, Hwang S, Liu P C, Xu Y X, Boscoboinik J A, Datta D, Mitlin D. J. Mater. Chem. A, 2021, 9(34): 18582.

doi: 10.1039/D1TA04705A     URL    
[125]
Yang R, Li L, Ren B, Chen D, Chen L P, Yan Y L. Progress in Chemistry, 2018, 30(11): 1681.
[126]
Dong W D, Wang C Y, Li C F, Xia F J, Yu W B, Wu L, Mohamed H S H, Hu Z Y, Liu J, Chen L H, Li Y, Su B L. Mater. Today Energy, 2021, 21: 100808.
[127]
Li W Y, Liu F C, Shen Z L, Hu H, Fu Z W. Int. J. Electrochem. Sci., 2021, 167: 12.
[128]
Tian H, Tian H J, Wang S J, Chen S M, Zhang F, Song L, Liu H, Liu J, Wang G X. Nat. Commun., 2020, 11: 5025.

doi: 10.1038/s41467-020-18820-y     pmid: 33024100
[129]
Park S K, Park J S, Kang Y C. ACS Appl. Mater. Interfaces, 2018, 10(19): 16531.

doi: 10.1021/acsami.8b03104     URL    
[130]
Lv H L, Chen R P, Wang X Q, Hu Y, Wang Y R, Chen T, Ma L B, Zhu G Y, Liang J, Tie Z X, Liu J, Jin Z. ACS Appl. Mater. Interfaces, 2017, 9(30): 25232.

doi: 10.1021/acsami.7b04321     URL    
[131]
Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q. Sci. Adv., 2019, 5(2): aau7728.
[132]
Deshpande S S, Deshpande M D, Alhameedi K, Ahuja R, Hussain T. ACS Appl. Energy Mater., 2021, 4(4): 3891.

doi: 10.1021/acsaem.1c00283     URL    
[133]
Lin S X, Chen Y H, Wang Y F, Cai Z H, Xiao J J, Muhmood T, Hu X B. ACS Appl. Mater. Interfaces, 2021, 13(8): 9955.

doi: 10.1021/acsami.0c21065     URL    
[134]
Mendes T C, Nguyen C, Barlow A J, Cherepanov P V, Forsyth M, Howlett P C, MacFarlane D R. Sustain. Energy Fuels, 2020, 4(5): 2322.

doi: 10.1039/C9SE01074B     URL    
[135]
Kalimuthu B, Nallathamby K. ACS Sustainable Chem. Eng., 2018, 6(5): 7064.

doi: 10.1021/acssuschemeng.8b00922     URL    
[136]
Babu D B, Ramesha K. Electrochimica Acta, 2016, 219: 295.

doi: 10.1016/j.electacta.2016.10.026     URL    
[137]
Guo J, Wang Q S, Jin J, Chen C H, Wen Z Y. J. Electrochem. Soc., 2016, 163(5): A654.

doi: 10.1149/2.0661605jes     URL    
[138]
Huang J T, Lin Y M, Yu J L, Li D Z, Du J G, Yang B, Li C H, Zhu C Z, Xu J. Chem. Eng. J., 2018, 350: 411.

doi: 10.1016/j.cej.2018.06.010     URL    
[139]
Cai Q F, Li Y Y wang L, Li Q W, Xu J, Gao B, Zhang X M, Huo K F, Chu P K. Nano Energy, 2017, 32: 1.

doi: 10.1016/j.nanoen.2016.12.010     URL    
[140]
Zhao X S, Yin L C, Zhang T, Zhang M, Fang Z B, Wang C Z, Wei Y J, Chen G, Zhang D, Sun Z H, Li F. Nano Energy, 2018, 49: 137.

doi: 10.1016/j.nanoen.2018.04.045     URL    
[141]
Zhao X S, Yin L C, Yang Z Z, Chen G, Yue H J, Zhang D, Sun Z H, Li F. J. Mater. Chem. A, 2019, 7(38): 21774.

doi: 10.1039/C9TA07630A     URL    
[142]
Dong W D, Yu W B, Xia F J, Chen L D, Zhang Y J, Tan H G, Wu L, Hu Z Y, Mohamed H S H, Liu J, Deng Z, Li Y, Chen L H, Su B L. J. Colloid Interface Sci., 2021, 582: 60.

doi: 10.1016/j.jcis.2020.06.071     URL    
[143]
Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20): 7067.

doi: 10.1039/C4CS00141A     URL    
[144]
Li Z S, Lin J P, Li B L, Yu C L, Wang H Q, Li Q Y. J. Energy Storage, 2021, 44: 103437.

doi: 10.1016/j.est.2021.103437     URL    
[145]
Ma J Y, Guo X T, Yan Y, Xue H G, Pang H. Adv. Sci., 2018, 5(6): 1700986.

doi: 10.1002/advs.201700986     URL    
[146]
Zhao C H, Xu L B, Hu Z B, Qiu S E, Liu K Y. RSC Adv., 2016, 6(53): 47486.

doi: 10.1039/C6RA07837K     URL    
[147]
Liu T, Zhang Y, Hou J K, Lu S Y, Jiang J, Xu M W. RSC Adv., 2015, 5(102): 84038.

doi: 10.1039/C5RA14979G     URL    
[148]
Lai Y Q, Gan Y Q, Zhang Z A, Chen W, Li J. Electrochimica Acta, 2014, 146: 134.

doi: 10.1016/j.electacta.2014.09.045     URL    
[149]
Zhang Z A, Yang X, Wang X W, Li Q, Zhang Z Y. Solid State Ion., 2014, 260: 101.

doi: 10.1016/j.ssi.2014.03.022     URL    
[150]
Zhang Z A, Yang X, Guo Z P, Qu Y H, Li J, Lai Y Q. J. Power Sources, 2015, 279: 88.

doi: 10.1016/j.jpowsour.2015.01.001     URL    
[151]
Cho J S, Park J S, Jeon K M, Kang Y C. J. Mater. Chem. A, 2017, 5(21): 10632.

doi: 10.1039/C7TA02616A     URL    
[152]
Dai C L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T. InfoMat, 2020, 2(3): 509.

doi: 10.1002/inf2.12039     URL    
[153]
Sha L N, Gao P, Ren X C, Chi Q Q, Chen Y J, Yang P P. Chem. Eur. J., 2018, 24(9): 2151.

doi: 10.1002/chem.201704079     URL    
[154]
Zeng L X, Chen X, Liu R P, Lin L X, Zheng C, Xu L H, Luo F Q, Qian Q R, Chen Q H, Wei M D. J. Mater. Chem. A, 2017, 5(44): 22997.

doi: 10.1039/C7TA06884K     URL    
[155]
Fan S, Zhang Y, Li S H, Lan T Y, Xu J L. RSC Adv., 2017, 7(34): 21281.

doi: 10.1039/C6RA28463A     URL    
[156]
Youn H C, Jeong J H, Roh K C, Kim K B. Sci. Rep., 2016, 6: 30865.

doi: 10.1038/srep30865     URL    
[157]
Huang D K, Li S H, Luo Y P, Xiao X, Gao L, Wang M K, Shen Y. Electrochimica Acta, 2016, 190: 258.

doi: 10.1016/j.electacta.2015.12.187     URL    
[158]
Han K, Liu Z, Shen J M, Lin Y Y, Dai F, Ye H Q. Adv. Funct. Mater., 2015, 25(3): 455.

doi: 10.1002/adfm.201402815     URL    
[159]
Mukkabla R, Deshagani S, Meduri P, Deepa M, Ghosal P. ACS Energy Lett., 2017, 2(6): 1288.

doi: 10.1021/acsenergylett.7b00251     URL    
[160]
Gu X X, Lai C. J. Mater. Res., 2018, 33(1): 16.

doi: 10.1557/jmr.2017.282     URL    
[161]
Aboonasr Shiraz M H, Rehl E, Kazemian H, Liu J. Nanomaterials, 2021, 11(8): 1976.

doi: 10.3390/nano11081976     URL    
[162]
Fang R Y, Xia Y, Liang C, He X P, Huang H, Gan Y P, Zhang J, Tao X Y, Zhang W K. J. Mater. Chem. A, 2018, 6(48): 24773.

doi: 10.1039/C8TA09758E     URL    
[163]
Choi D S, Yeom M S, Kim Y T, Kim H, Jung Y. Inorg. Chem., 2018, 57(4): 2149.

doi: 10.1021/acs.inorgchem.7b03001     URL    
[164]
Zhao X S, Jiang L, Ma C H, Cheng L, Wang C Z, Chen G, Yue H J, Zhang D. J. Power Sources, 2021, 490: 229534.

doi: 10.1016/j.jpowsour.2021.229534     URL    
[165]
Pham V H, Boscoboinik J A, Stacchiola D J, Self E C, Manikandan P, Nagarajan S, Wang Y X, Pol V G, Nanda J, Paek E, Mitlin D. Energy Storage Mater., 2019, 20: 71.
[166]
Xu Q T, Xue H G, Guo S P. Inorg. Chem. Front., 2019, 6(6): 1326.

doi: 10.1039/C9QI00278B     URL    
[167]
Wang Y C, Chu F L, Zeng J, Wang Q J, Naren T Y, Li Y Y, Cheng Y, Lei Y P, Wu F X. ACS Nano, 2021, 15(1): 210.

doi: 10.1021/acsnano.0c08652     URL    
[168]
Yang M, Zhou Z. Advanced Science, 2017, 48: 10.
[169]
Wang Y Z, Ke C X, Zhou J N, Qin L Z, Lin X M, Cheng Q X, Liu J C. Inorg. Chem. Commun., 2019, 108: 107538.

doi: 10.1016/j.inoche.2019.107538     URL    
[170]
Park S K, Park J S, Kang Y C. Mater. Charact., 2019, 151: 590.

doi: 10.1016/j.matchar.2019.03.032     URL    
[171]
Jia M, Lu S Y, Chen Y M, Liu T, Han J, Shen B L, Wu X S, Bao S J, Jiang J, Xu M W. J. Power Sources, 2017, 367: 17.

doi: 10.1016/j.jpowsour.2017.09.038     URL    
[172]
Wang M, Guo Y, Wang B Y, Luo H, Zhang X M, Wang Q, Zhang Y, Wu H, Liu H K, Dou S X. J. Mater. Chem. A, 2020, 8(6): 2969.

doi: 10.1039/C9TA11124G     URL    
[173]
Ning G Q, Ma X L, Zhu X, Cao Y M, Sun Y Z, Qi C L, Fan Z J, Li Y F, Zhang X, Lan X Y, Gao J S. ACS Appl. Mater. Interfaces, 2014, 6(18): 15950.

doi: 10.1021/am503716k     URL    
[174]
Zhao C H, Luo J S, Hu Z B. Micro & Nano Lett., 2018, 13(10): 1386.

doi: 10.1049/mnl.2018.5154     URL    
[175]
Song J P, Wu L, Dong W D, Li C F, Chen L H, Dai X, Li C, Chen H, Zou W, Yu W B, Hu Z Y, Liu J, Wang H E, Li Y, Su B L. Nanoscale, 2019, 11(14): 6970.

doi: 10.1039/C9NR00924H     URL    
[176]
Wang W, Tang M Q, Yan Z W. Ceram. Int., 2020, 46(14): 22999.

doi: 10.1016/j.ceramint.2020.06.075     URL    
[177]
Lee S, Lee J, Kim W, Kim H J, Pak C, Lee J T, Eom K. J. Power Sources, 2018, 408: 111.

doi: 10.1016/j.jpowsour.2018.09.095     URL    
[178]
Hu J L, Zhong H X, Yan X D, Zhang L Z. Appl. Surf. Sci., 2018, 457: 705.

doi: 10.1016/j.apsusc.2018.06.296     URL    
[179]
Dong P P, Han K S, Lee J I, Zhang X H, Cha Y, Song M K. ACS Appl. Mater. Interfaces, 2018, 10(35): 29565.

doi: 10.1021/acsami.8b09062     URL    
[180]
Zhang J T, Li Z, Lou X W D. Angew. Chem. Int. Ed., 2017, 56(45): 14107.

doi: 10.1002/anie.201708105     URL    
[181]
Guo B S, Yang T T, Du W Y, Ma Q R, Zhang L Z, Bao S J, Li X Y, Chen Y M, Xu M W. J. Mater. Chem. A, 2019, 7(19): 12276.

doi: 10.1039/C9TA02695A     URL    
[182]
Xu J J, Wang Z L, Xu D, Meng F Z, Zhang X B. Energy Environ. Sci., 2014, 7(7): 2213.

doi: 10.1039/c3ee42934b     URL    
[183]
Chang Z W, Xu J J, Zhang X B. Advanced Energy Materials, 2017, 7(23): 21.
[184]
Hong Y J, Roh K C, Kang Y C. J. Mater. Chem. A, 2018, 6(9): 4152.

doi: 10.1039/C7TA11112F     URL    
[185]
Park S K, Park J S, Kang Y C. J. Mater. Chem. A, 2018, 6(3): 1028.

doi: 10.1039/C7TA09676C     URL    
[186]
Zhao C X, Li X Y, Zhao M, Chen Z X, Song Y W, Chen W J, Liu J N, Wang B, Zhang X Q, Chen C M, Li B Q, Huang J Q, Zhang Q. J. Am. Chem. Soc., 2021, 143(47): 19865.

doi: 10.1021/jacs.1c09107     URL    
[187]
Wu K W, Wang J, Xu C S, Jiao X, Hu X B, Guan W. ACS Appl. Energy Mater., 2021, 4(9): 10203.

doi: 10.1021/acsaem.1c02078     URL    
[188]
Cao R G, Xu W, Lv D P, Xiao J, Zhang J G. Adv. Energy Mater., 2015, 5(16): 1402273.

doi: 10.1002/aenm.201402273     URL    
[189]
Zhao H J, Deng N P, Yan J, Kang W M, Ju J G, Ruan Y L, Wang X Q, Zhuang X P, Li Q X, Cheng B W. Chem. Eng. J., 2018, 347: 343.

doi: 10.1016/j.cej.2018.04.112     URL    
[190]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y     pmid: 23448508
[191]
Dong P P, Zhang X H, Cha Y, Lee J I, Song M K. Nano Energy, 2020, 69: 104434.

doi: 10.1016/j.nanoen.2019.104434     URL    
[192]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6: 8058.

doi: 10.1038/ncomms9058     URL    
[193]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32     URL    
[194]
Huang X S. J. Solid State Electrochem., 2011, 15(4): 649.

doi: 10.1007/s10008-010-1264-9     URL    
[195]
Zhang H, Jia D D, Yang Z W, Yu F Q, Su Y L, Wang D J, Shen Q. Carbon, 2017, 122: 547.

doi: 10.1016/j.carbon.2017.07.004     URL    
[196]
Zhou J J, Yang J, Xu Z X, Zhang T, Chen Z Y, Wang J L. J. Mater. Chem. A, 2017, 5(19): 9350.

doi: 10.1039/C7TA01564J     URL    
[197]
Xiang Y Y, Li J S, Lei J H, Liu D, Xie Z Z, Qu D Y, Li K, Deng T F, Tang H L. ChemSusChem, 2016, 9(21): 3023.

doi: 10.1002/cssc.201600943     URL    
[198]
Xie L S, Yu S X, Yang H J, Yang J, Ni J L, Wang J L. Rare Met., 2017, 36(5): 434.

doi: 10.1007/s12598-017-0910-0     URL    
[199]
Yuan M Q, Liu K. J. Energy Chem., 2020, 43: 58.

doi: 10.1016/j.jechem.2019.08.008     URL    
[200]
Yang Y, Hong X J, Song C L, Li G H, Zheng Y X, Zhou D D, Zhang M, Cai Y P, Wang H X. J. Mater. Chem. A, 2019, 7(27): 16323.

doi: 10.1039/c9ta04614c    
[201]
Si L P, Wang J Y, Li G H, Hong X J, Wei Q, Yang Y, Zhang M, Cai Y P. Mater. Lett., 2019, 246: 144.

doi: 10.1016/j.matlet.2019.03.057     URL    
[202]
Wei Z H, Ren Y Q, Sokolowski J, Zhu X D, Wu G. InfoMat, 2020, 2(3): 483.

doi: 10.1002/inf2.12097     URL    
[203]
Mukkabla R, Kuldeep, Killi K, Shivaprasad S M, Deepa M. Chem. Eur. J., 2018, 24(65): 17327.

doi: 10.1002/chem.201803980     URL    
[204]
Zhang Z A, Zhang Z Y, Zhang K, Yang X, Li Q. RSC Adv., 2014, 4(30): 15489.

doi: 10.1039/C4RA00446A     URL    
[205]
Fang R P, Zhou G M, Pei S F, Li F, Cheng H M. Chem. Commun., 2015, 51(17): 3667.

doi: 10.1039/C5CC00089K     URL    
[206]
Jeong Y C, Kim J H, Nam S, Park C R, Yang S J. Adv. Funct. Mater., 2018, 28(38): 1870268.
[207]
Zhu D M, Long T, Xu B, Zhao Y X, Hong H T, Liu R J, Meng F C, Liu J H. J. Energy Chem., 2021, 57: 41.

doi: 10.1016/j.jechem.2020.08.039     URL    
[208]
Yang Z W, Zhu K J, Dong Z H, Jia D D, Jiao L F. ACS Appl. Mater. Interfaces, 2019, 11(43): 40069.

doi: 10.1021/acsami.9b14215     URL    
[209]
Wang B, Hu Q Q, Hu J L, Zhang L Z. Energy Technol., 2021, 9(8): 2100274.

doi: 10.1002/ente.202100274     URL    
[210]
Gu X X, Tong C J, Rehman S, Liu L M, Hou Y L, Zhang S Q. ACS Appl. Mater. Interfaces, 2016, 8(25): 15991.

doi: 10.1021/acsami.6b02378     URL    
[211]
Zhang Y, Guo Y, Wang B Y, Wei Y H, Jing P, Wu H, Dai Z D, Wang M, Zhang Y,. Carbon, 2020, 161: 413.

doi: 10.1016/j.carbon.2020.01.102     URL    
[212]
Younesi R, Veith G M, Johansson P, Edström K, Vegge T. Energy Environ. Sci., 2015, 8(7): 1905.

doi: 10.1039/C5EE01215E     URL    
[213]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235     URL    
[214]
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Angew. Chem. Int. Ed., 2020, 59(31): 12636.

doi: 10.1002/anie.201909339     URL    
[215]
Jozwiuk A, Berkes B B, Weiß T, Sommer H, Janek J, Brezesinski T. Energy Environ. Sci., 2016, 9(8): 2603.

doi: 10.1039/C6EE00789A     URL    
[216]
Zhang S S. Electrochimica Acta, 2012, 70: 344.

doi: 10.1016/j.electacta.2012.03.081     URL    
[217]
Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(19): 5301.

doi: 10.1002/anie.201801513     URL    
[218]
Yang H C, Chen X, Yao N, Piao N, Wang Z X, He K, Cheng H M, Li F. ACS Energy Lett., 2021: 1413.
[219]
Zhuang Z P, Dai X, Dong W D, Jiang L Q, Wang L, Li C F, Yang J X, Wu L, Hu Z Y, Liu J, Chen L H, Li Y, Su B L. Electrochimica Acta, 2021, 393: 139042.

doi: 10.1016/j.electacta.2021.139042     URL    
[220]
Shiraz M H A, Yuhai H, Jian L. ECS Trans. (UK), 2020, 977: 279.
[221]
Lai J N, Xing Y, Chen N, Li L, Wu F, Chen R J. Angew. Chem. Int. Ed., 2020, 59(8): 2974.

doi: 10.1002/anie.201903459     URL    
[222]
Wang W P, Zhang J, Yin Y X, Duan H, Chou J, Li S Y, Yan M, Xin S, Guo Y G. Adv. Mater., 2020, 32(23): 2000302.

doi: 10.1002/adma.202000302     URL    
[223]
Wang W P, Zhang J, Li X T, Yin Y X, Xin S, Guo Y G. Chem. Res. Chin. Univ., 2021, 37(2): 298.

doi: 10.1007/s40242-021-0448-4     URL    
[224]
Dirican M, Yan C Y, Zhu P, Zhang X W. Mater. Sci. Eng. R Rep., 2019, 136: 27.

doi: 10.1016/j.mser.2018.10.004     URL    
[225]
Zhou Y C, Li Z J, Lu Y C. Nano Energy, 2017, 39: 554.

doi: 10.1016/j.nanoen.2017.07.038     URL    
[226]
Li X N, Liang J W, Li X, Wang C H, Luo J, Li R Y, Sun X L. Energy Environ. Sci., 2018, 11(10): 2828.

doi: 10.1039/C8EE01621F     URL    
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[3] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[4] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[5] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[6] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[7] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[10] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[11] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[12] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[13] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[14] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[15] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
阅读次数
全文


摘要

锂硒电池研究进展