English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1760-1771 DOI: 10.7536/PC220119 前一篇   后一篇

• 综述 •

液体橡皮泥:属性特征、制备策略及应用探索

李晓光*(), 庞祥龙   

  1. 西北工业大学物理科学与技术学院 西安 710129
  • 收稿日期:2022-01-18 修回日期:2022-02-28 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 李晓光
  • 基金资助:
    国家自然科学基金项目(11974280); 国家自然科学基金项目(51672224)

Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations

Xiaoguang Li(), Xianglong Pang   

  1. School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • Received:2022-01-18 Revised:2022-02-28 Online:2022-08-20 Published:2022-04-01
  • Contact: Xiaoguang Li
  • Supported by:
    National Natural Science Foundation of China(11974280); National Natural Science Foundation of China(51672224)

液体橡皮泥是指空气环境中被颗粒包裹的以可塑性和复杂形状为特征的液体系统,目前已被成功应用于气体传感、蛋白质分析、光催化等领域,并展现出了很多独特优势。这是一种新兴的软物质体系,与被颗粒包裹的形状为类球形的液体弹珠组成相似,但打破了后者的形状单一性。本文从裸液滴和液体弹珠出发,通过对液体形状和颗粒堵塞问题的分析,梳理了液体橡皮泥技术的建立过程。随后,论述了国内外的研究进展,对不同种类液体橡皮泥的制备、特性及应用进行了概括和分析,重点讨论了单层纳米颗粒结构液体橡皮泥的系列研究。最后,围绕液体橡皮泥的概念内涵、制备方法、特性对比、功能应用等问题进行了总结和探讨,并就未来发展方向和研究思路提出了建议。

A liquid plasticine (LP) refers to a self-standing liquid system coated by hydrophobic particles in air environment, which is featured by plasticity and complex shape. As emerging soft matter systems, LPs have been successfully applied in several areas including gas sensing, protein analysis, and photocatalysis, with important and peculiar advantages. In this review, we first analyze the initial development stage of LP study with discussions on liquid shape and surface jamming. Non-wetting droplets including naked droplets supported by superhydrophobic surfaces and particle-covered spherical liquid marbles (LMs) are involved in the discussion and their relationships with LPs are clarified. We then summarize the current progress of LPs, with discussions on the preparations, properties, and applications. Nearly all kinds of LPs are discussed, and particular attention is paid to monolayer nanoparticle covered (mNPc) LPs considering the study on which is currently the most comprehensive and systematic. In the end, we summarize and analyze the concept connotation of liquid plasticine, the key issues in the preparation, the main differences between different LPs, and the application potentials. We also point out several research directions for future study with suggestions on the idea conception.

Contents

1 Introduction

2 Monolayer nanoparticle-covered liquid plasticines (mNPc LPs)

2.1 Liquid surface covered by the nanoparticle monolayer

2.2 Preparations and formation mechanisms of mNPc LPs

2.3 Applications of mNPc LPs

3 Other kinds of LPs

3.1 LPs coated by powder-derived nanoparticles

3.2 LPs coated by mm-sized plates

3.3 LPs coated by micron-sized stearic acid particles

3.4 LPs coated by micron-sized sulfur particles

4 Conclusion and outlook

()
图1 (a) 由聚四氟乙烯粉末制备的液体弹珠[38];(b) 利用界面颗粒堵塞得到的非球形气泡 (i) 和油滴 (ii)[41];(c) 利用液体弹珠凝并得到的哑铃形液体橡皮泥[42];(d) 利用镀膜工具挤压液滴得到的液体橡皮泥[43];(e) 诱导液体橡皮泥凝并的过程;(f) 基于多重凝并拼接而得到的复杂形状液体橡皮泥[44]
Fig. 1 (a) Image of a polytetrafluoroethylene LM[38]; (b) Non-spherical bubble (i) and oil droplet-in-water (ii) obtained by interfacial jamming[41]; (c) A dumbbell-shaped LP produced by coalescing two LMs[42]; (d) LPs produced by squeezing particles onto droplet surfaces[43]; (e) A typical process for coalescing two LPs; (f) Demonstration of LPs produced by the coalescence-based joining strategy[44]
图2 附着颗粒的液滴表面显微图:(a) 表面附着初始粒径为3 nm的SiO2粉末颗粒[58]; (b) 表面附着尺寸为20 nm的单层SiO2纳米颗粒[59]
Fig. 2 Environmental scanning electron microscopy images: (a) liquid surface covered by a powder consisting of 3 nm SiO2 NP units[56] (b) liquid surface covered by 20 nm SiO2 NP monolayer[57]
图3 (a)通过局部挤压使液体橡皮泥进一步形变的过程;(b) 经多次挤压、摩擦而得到的典型液体橡皮泥[43];(c) 挤压液滴引起的单层颗粒转移以及界面堵塞示意图;(d)利用激光共聚焦技术观察到的液体橡皮泥表面,其中蓝色部分为颗粒;(e) 液体表面两个颗粒之间的相互作用能与颗粒间距的关系,其中α = h/2r; (f) 注液、抽液引起的液滴形态演变[44]。
Fig. 3 (a) Shaping a LP by local squeezing; (b) Typical LPs obtained by multiple squeezing and rubbing[43]; (c) Schematic of transfer and jamming of monolayer NPs by squeezing; (d) Laser confocal image of a LP surface with the blue areas representing NPs. (e) Interaction energy between two NPs on liquid surface versus their distance, where α = h/2r; (f) Liquid addition and extraction-induced evolutions of droplet shape[44]
图4 (a) 液饼表面堵塞前后形态变化;五角星形液体橡皮泥制备过程示意图 (b) 及产品实物图 (c);(d) 环形液体橡皮泥在加液过程中的形态演变;(e) 复杂汉字型液体橡皮泥;(f) 由若干个堵塞态液饼拼接得到的超大尺寸液饼 (i),以及通过对该液饼塑形得到的管道网络型液体橡皮泥 (ii)[45]
Fig. 4 (a) Shape change of a liquid pancake induced by surface jamming; Schematic illustrating the cutting strategy for liquid shaping (b) and real image of a star-shaped LP (c); (d) Shape evolution of a ring-shaped LP during liquid addition; (e) A Chinese character dragon-shaped LP; (f) A large pancake produced by joining several jammed pancakes (i), and the resulting network-shaped LP (ii)[45]
图5 具有pH响应功能的mNPc液体橡皮泥[48]
Fig. 5 mNPc LPs with the pH-responsive property[48]
图6 (a)“U”形和 (b)“一”形液体橡皮泥中的电泳现象;(c)“Z”形液体橡皮泥中的化学反应现象[44]
Fig. 6 Electrophoresis phenomena in (a) U-shaped and (b) rod-shaped mNPc LPs; (c) Chemical reaction phenomena in a Z-shaped mNPc LP[44]
图7 (a) 由酚酞溶液制成的条形液体橡皮泥;(b) 加入氨水液滴后的最终现象;(c) 不同氨水体积条件下液体橡皮泥颜色随氨气挥发时间的演变;(d) 颜色前沿的行进速度;(e) 氨气扩散速度拟合曲线及拟合得到的扩散前沿浓度c0[46]
Fig. 7 (a) Rod-shaped mNPc LP consisting of phenolphthalein; (b) The final phenomenon after introducing an ammonia droplet; (c) The color evolution of the LP versus the volatilization time of ammonia gas; (d) The forward velocity of the color frontier; (e) The fitting curve of velocity and the fitted gas concentration at the color frontier[46]
图8 (a) 液体橡皮泥-等电聚焦蛋白分析系统;(b) 蛋白分离示意图;(c) 蛋白分离后成像时的颜色分布;(d) 切割液体橡皮泥得到液体弹珠以及从液体弹珠中加入或提取物质的实例[47]
Fig. 8 (a) LP-Isoelectrofocusing (IEF) system for protein analysis; (b) Schematic for protein separation; (c) Color distribution after protein separation; (d) LP-derived LMs and available manipulations for subsequent analysis[47]
图9 由粉末源SiO2纳米颗粒制备的字母形液体橡皮泥[49]
Fig. 9 English-letter-shaped LPs produced with a powder consisting of SiO2 NPs[49]
图10 由毫米级反光薄片制得的 (a) 多面体液体弹珠和 (b) 液体橡皮泥;(c) 利用透明薄片制成的液体橡皮泥[52];(d) 不同尺寸薄片(i: 2 mm, ii: 1 mm, iii: 0.2 mm)对应的转角结构实例[53]
Fig. 10 Polyhedral LMs (a) and LP (b) produced with mm-sized hydrophobic sheets; (c) LPs produced with transparent sheets[52]; (d) Illustration of the angular parts of LPs with different sheet sizes (i: 2 mm, ii: 1 mm, iii: 0.2 mm)[53]
图11 (a) 液滴在硬脂酸粉末上滚动后的形态及表面凝胶化示意图;(b) pH值、体积、滚动时间对液滴滚动后形态的影响;(c) 复杂形状硬脂酸液体橡皮泥;(d) 利用液体橡皮泥的管道结构和可分割性获得不同颜色液体弹珠的过程[50]
Fig. 11 (a) Image of a LP formed by rolling a droplet on the stearic acid powder and the schematic depicting the surface gelation mechanism; (b) Liquid shapes under different pH values, volumes, and rolling durations; (c) Stearic acid LPs with complex shapes; (d) A process for getting two LMs with different colors, based on the channel structure and the cuttable property of the LP[50]
图12 (a) S8颗粒覆盖的液体弹珠/液体橡皮泥表面组分间的相互作用示意图;(b) 基于表面凝胶化制备的S8液体橡皮[51]
Fig. 12 (a) Schematic depicting interactions between surface components of a S8 particle-covered LM/LP; (b) Demonstration of typical S8 LPs[51]
[1]
Kothare M V. Comput. Chem. Eng., 2006, 30(10/12): 1725.

doi: 10.1016/j.compchemeng.2006.05.026     URL    
[2]
Abdulkadir T, Stephan J, Khalid A. Chem. Eng. J., 2017, 327: 792.

doi: 10.1016/j.cej.2017.06.161     URL    
[3]
Liu Z, Yang T Y, Huang Y X, Liu Y, Chen L C, Deng L B, Shum H C, Kong T T. Adv. Funct. Mater., 2019, 29(19): 1901101.
[4]
Valera F, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral J, Blackmond D. Angew. Chem. Int. Ed., 2010, 49(14): 2478.

doi: 10.1002/anie.200906095     URL    
[5]
Hartman R L, McMullen J P, Jensen K F. Angew. Chem. Int. Ed., 2011, 50(33): 7502.

doi: 10.1002/anie.201004637     pmid: 21710673
[6]
Xu L Y, Chen S S, Lu X M, Lu Q H. Natl. Sci. Rev., 2019, 6(6): 1255.

doi: 10.1093/nsr/nwz095     URL    
[7]
Su B, Wang S T, Song Y L, Jiang L. Nano Res., 2011, 4(3): 266.

doi: 10.1007/s12274-010-0078-5     URL    
[8]
Beckingham L J, Todorovic M, Tello Velasquez J, Vial M L, Chen M, Ekberg J A K, St John J A. J. Biol. Eng., 2019, 13: 41.

doi: 10.1186/s13036-019-0176-1     pmid: 31131022
[9]
Aussillous P, Quéré D. Nature, 2001, 411(6840): 924.

doi: 10.1038/35082026     URL    
[10]
Aussillous P, Quéré D. Proc. R. Soc. A, 2006, 462(2067): 973.

doi: 10.1098/rspa.2005.1581     URL    
[11]
Ooi C H, Singha P, Nguyen N K, An H, Nguyen V T, Nguyen A V, Nguyen N T. Soft Matter, 2021, 17: 4069.

doi: 10.1039/D1SM00101A     URL    
[12]
Li X G, Shi H X, Wang Y Q, Wang H M, Huang J C, Duan M. Soft Matter, 2020, 16(18): 4512.

doi: 10.1039/C9SM02199J     URL    
[13]
Dandan M, Erbil H Y. Langmuir, 2009, 25(14): 8362.

doi: 10.1021/la900729d     pmid: 19499944
[14]
Zhao Y, Fang J, Wang H X, Wang X G, Lin T. Adv. Mater., 2010, 22(6): 707.

doi: 10.1002/adma.200902512     URL    
[15]
Zhao Y, Xu Z G, Niu H T, Wang X G, Lin T. Adv. Funct. Mater., 2015, 25(3): 437.

doi: 10.1002/adfm.201403051     URL    
[16]
Zhang L B, Cha D, Wang P. Adv. Mater., 2012, 24(35): 4756.

doi: 10.1002/adma.201201885     URL    
[17]
Tan T T Y, Ahsan A, Reithofer M R, Tay S W, Tan S Y, Hor T S A, Chin J M, Chew B K J, Wang X B. Langmuir, 2014, 30(12): 3448.

doi: 10.1021/la500646r     URL    
[18]
Han X M, Lee H K, Lee Y H, Hao W, Liu Y J, Phang I Y, Li S Z, Ling X Y. J. Phys. Chem. Lett., 2016, 7(8): 1501.

doi: 10.1021/acs.jpclett.6b00501     URL    
[19]
Nakai K, Nakagawa H, Kuroda K, Fujii S, Nakamura Y, Yusa S I. Chem. Lett., 2013, 42(7): 719.

doi: 10.1246/cl.130240     URL    
[20]
Inoue M, Fujii S, Nakamura Y, Iwasaki Y, Yusa S I. Polym. J., 2011, 43(9): 778.

doi: 10.1038/pj.2011.55     URL    
[21]
Fujii S, Suzaki M, Armes S P, Dupin D, Hamasaki S, Aono K, Nakamura Y. Langmuir, 2011, 27(13): 8067.

doi: 10.1021/la201317b     URL    
[22]
Dupin D, Thompson K L, Armes S P. Soft Matter, 2011, 7(15): 6797.

doi: 10.1039/c1sm05889d     URL    
[23]
Dupin D, Armes S P, Fujii S. J. Am. Chem. Soc., 2009, 131(15): 5386.

doi: 10.1021/ja901641v     URL    
[24]
Luo X J, Zhang X, Feng Y J. Acta Phys.-Chim. Sin., 2020, 36: 1910007.
罗新杰, 张熙, 冯玉军. 物理化学学报, 2020, 36: 1910007.).
[25]
Sarvi F, Jain K, Arbatan T, Verma P J, Hourigan K, Thompson M C, Shen W, Chan P P Y. Adv. Healthcare Mater., 2015, 4(1): 77.

doi: 10.1002/adhm.201400138     URL    
[26]
Vadivelu R K, Kamble H, Munaz A, Nguyen N T. Biomed. Microdevices, 2017, 19(2): 31.

doi: 10.1007/s10544-017-0171-6     pmid: 28421401
[27]
Lin K J, Chen R Y, Zhang L Y, Zang D Y, Geng X G, Shen W. ACS Appl. Mater. Interfaces, 2019, 11(9): 8789.

doi: 10.1021/acsami.8b20169     URL    
[28]
Adamatzky A, Tsompanas M A, Draper T C, Fullarton C, Mayne R. ChemPhysChem, 2020, 21(1): 90.

doi: 10.1002/cphc.201900949     pmid: 31696651
[29]
Ghanbari M, Rezazadeh G. Microsyst. Technol., 2020, 26(2): 617.

doi: 10.1007/s00542-019-04528-7     URL    
[30]
Yukioka S, Fujiwara J, Okada M, Fujii S, Nakamura Y, Yusa S I. Langmuir, 2020, 36(25): 6971.

doi: 10.1021/acs.langmuir.9b03074     URL    
[31]
Tian J F, Arbatan T, Li X, Shen W. Chem. Eng. J., 2010, 165(1): 347.

doi: 10.1016/j.cej.2010.06.036     URL    
[32]
Tian J F, Arbatan T, Li X, Shen W. Chem. Commun., 2010, 46(26): 4734.

doi: 10.1039/c001317j     URL    
[33]
Xue N, Cao J, Zhang X M, Li C M, Ettelaie R, Liu X, Yang H Q. Carbon, 2021, 179: 541.

doi: 10.1016/j.carbon.2021.04.060     URL    
[34]
Fujii S, Sawada S, Nakayama S, Kappl M, Ueno K, Shitajima K, Butt H J, Nakamura Y. Mater. Horiz., 2016, 3(1): 47.

doi: 10.1039/C5MH00203F     URL    
[35]
Singha P, Nguyen N K, Zhang J, Nguyen N T, Ooi C H. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 627: 127176.
[36]
Wang R X, Li X G. Powder Technol., 2020, 367: 608.

doi: 10.1016/j.powtec.2020.04.028     URL    
[37]
Li X G, Wang R X, Huang S, Wang Y Q, Shi H X. Soft Matter, 2018, 14(48): 9877.

doi: 10.1039/C8SM01846D     URL    
[38]
Li X G, Wang R X, Shi H X, Song B H. Appl. Phys. Lett., 2018, 113: 101602.
[39]
Marston J O, Zhu Y, Vakarelski I U, Thoroddsen S T. Powder Technol., 2012, 228: 424.

doi: 10.1016/j.powtec.2012.06.003     URL    
[40]
Li X G, Wang Y Q, Yang Y, Wang S H, Zang D Y, Geng X G. Appl. Phys. Lett., 2018, 113: 133702.
[41]
Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Nature, 2005, 438(7070): 930.
[42]
Zhao Y J, Gu H C, Xie Z Y, Shum H C, Wang B P, Gu Z Z. J. Am. Chem. Soc., 2013, 135(1): 54.

doi: 10.1021/ja310389w     URL    
[43]
Li X G, Shen J. Chem. Commun., 2013, 49(85): 10016.
[44]
Li X G, Xue Y H, Lv P Y, Lin H, Du F, Hu Y Y, Shen J, Duan H L. Soft Matter, 2016, 12(6): 1655.

doi: 10.1039/C5SM02765A     URL    
[45]
Li X G, Shi H X, Wang Y Q, Wang R X, Huang S, Huang J C, Geng X G, Zang D Y. Adv. Mater. Interfaces, 2018, 5(2): 1701139.
[46]
Li X G, Shi H X, Hu Y Y. Soft Matter, 2019, 15(15): 3085.

doi: 10.1039/C9SM00362B     URL    
[47]
Niu J C, Shi H X, Wei H G, Gao B, Li J X, Xu F, Li X G, Li F. Anal. Chem., 2020, 92(13): 9048.

doi: 10.1021/acs.analchem.0c01237     URL    
[48]
Kano S, Tsunekawa Y, Fujii S, Nakamura Y, Yusa S I. Chem. Lett., 2021, 50: 1274.

doi: 10.1246/cl.210104     URL    
[49]
Liu J L, Zuo P C. Eur. Phys. J. E, 2016, 39(2): 17.

doi: 10.1140/epje/i2016-16017-6     URL    
[50]
Mahmoudi Salehabad S, Azizian S, Fujii S. Langmuir, 2019, 35(27): 8950.

doi: 10.1021/acs.langmuir.9b01473     pmid: 31179706
[51]
Salehabad S M, Azizian S. ACS Appl. Mater. Interfaces, 2020, 12(38): 43201.
[52]
Geyer F, Asaumi Y, Vollmer D, Butt H J, Nakamura Y, Fujii S. Adv. Funct. Mater., 2019, 29(25): 1808826.
[53]
Fujiwara J, Geyer F, Butt H J, Hirai T, Nakamura Y, Fujii S. Adv. Mater. Interfaces, 2020, 7(24): 2001573.
[54]
Bormashenko E, Pogreb R, Musin A, Balter R, Whyman G, Aurbach D. Powder Technol., 2010, 203(3): 529.

doi: 10.1016/j.powtec.2010.06.019     URL    
[55]
McHale G, Newton M I. Soft Matter, 2011, 7(12): 5473.

doi: 10.1039/c1sm05066d     URL    
[56]
Cui B Y, Yuan Z D. Chemistry, 2020, 83(9): 850.
崔博雅, 袁振东. 化学通报, 2020, 83(9): 850. ).
[57]
Wang F Q, Wang Q, Li C X, Zhu F Y, Shen Z J. Coal Mine Blasting, 2021, 39: 29.
汪凤琪, 汪泉, 李成孝, 朱福园, 沈占军. 煤矿爆破, 2021, 39: 29.).
[58]
Bhosale P S, Panchagnula M V, Stretz H A. Appl. Phys. Lett., 2008, 93(3): 034109.
[59]
Li X G, Wang Y Q, Huang J C, Yang Y, Wang R X, Geng X G, Zang D Y. Appl. Phys. Lett., 2017, 111: 261604.
[60]
Li X G. Adv. Colloid Interface Sci., 2019, 271: 101988.
[61]
Li X G, Wang Y Q, Wang R X, Wang S H, Zang D Y, Geng X G. Adv. Mater. Interfaces, 2018, 5(15): 1800356.
[1] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[4] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[5] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[6] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[7] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[8] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223.
[9] 孙加振, 邝旻翾, 宋延林. 喷墨打印中“咖啡环”效应的调控及应用[J]. 化学进展, 2015, 27(8): 979-985.
[10] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[11] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[12] 闫超, 李梅, 路庆华. 液体弹珠及其研究进展[J]. 化学进展, 2011, 23(4): 649-656.
[13] 徐建海,李梅,赵燕,路庆华. 具有微纳米结构超疏水表面润湿性的研究*[J]. 化学进展, 2006, 18(11): 1425-1433.
[14] 梁振鹏,王朝阳,孙启龙,童真. LbL层层纳米自组装法制备新型微胶囊*[J]. 化学进展, 2004, 16(04): 485-.
[15] 马磊,陈彬,吴骊珠,彭明丽,张丽萍,佟振合. 微反应器中的不对称光化学反应*[J]. 化学进展, 2004, 16(03): 386-.