English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1330-1340 DOI: 10.7536/PC180127 前一篇   后一篇

• 综述 •

连续流离子聚合

赵婉茹1, 胡欣2*, 朱宁1*, 方正1, 郭凯1*   

  1. 1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800;
    2. 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2018-01-26 修回日期:2018-04-03 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 胡欣, 朱宁, 郭凯 E-mail:xinhu@njtech.edu.cn;ningzhu@njtech.edu.cn;guok@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21878145,21522604,21604037,21776130)和江苏省先进生物制造创新中心(No.XTD1823,XTB1802)

Ionic Polymerizations in Continuous Flow

Wanru Zhao1, Xin Hu2*, Ning Zhu1*, Zheng Fang1, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2018-01-26 Revised:2018-04-03 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21878145, 21522604, 21604037, 21776130) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD1823, XTB1802).
微流场技术因其良好的传质传热性能应用于各种机理的聚合反应中,引起了学术界和工业界的广泛关注。本文聚焦于高度放热的离子聚合,总结了近年来不同单体连续流阴/阳离子聚合的研究进展。微反应器在改善离子聚合苛刻的反应条件、精确地控制聚合产物分子量及其分布、调控共聚物结构等方面显示出釜式反应器无法比拟的优势。此外,本文对连续流离子聚合的工业化应用前景进行了探讨和展望。
Continuous flow polymerizations in the microreactors have attracted great research interest from both academia and industry. Remarkable advantages have been achieved by using microflow technology due to its superior mixing and heat transfer performance. This review focused on the recent progress in highly exothermic ionic polymerizations in microreactors. Compared with the traditional batch reactors, continuous flow anionic/cationic polymerizations show tremendous benefits, including but not limited to improvement of reaction conditions, good control of the molecular weight and the molecular weight distribution, and highly efficient construction of block structures. Moreover, the applications of continuous flow ionic polymerizations in the industry are discussed and prospected.
Contents
1 Introduction
2 Cationic polymerization in continuous flow
2.1 Controlled/living cationic polymerization of vinyl ethers in continuous flow
2.2 Controlled/living cationic polymerization of diisopropenylbenzenes in continuous flow
2.3 Controlled/living cationic polymerization of isobutylene in continuous flow
3 Anionic polymerization in continuous flow
3.1 Controlled/living anionic polymerization of styrenes in continuous flow
3.2 Controlled/living anionic polymerization of alkyl methacrylates in continuous flow
3.3 Controlled/living anionic block copolymerization of styrenes and alkyl methacrylates in continuous flow
4 Conclusion and outlook

中图分类号: 

()
[1] Plutschack M B, Pieber B, Gilmore K, Seeberger P H. Chem. Rev., 2017, 117:11796.
[2] Reizman B J, Jensen K F. Acc. Chem. Res., 2016, 49:1786.
[3] Elvira K, Solvas X, Woothon R, deMello A. Nat. Chem., 2013, 5:905.
[4] Poh J, Browne D L, Ley S V. React. Chem. Eng., 2016, 1:101.
[5] 骆广生(Luo G S),王凯(Wang K),王佩坚(Wang P J),吕阳成(Lu Y C),化工学报(CIESC Journal),2014,65:2563.
[6] 申刚义(Shen G Y), 于婉婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X). 化学进展(Progress in Chemistry), 2013, 25:1199.
[7] Chen Y Z, Zhao Y C, Han M, Ye C B, Dang M H, Chen G W. Green Chem., 2013, 15:91.
[8] Wen Z Z, Yu X H, Tu S T, Yan J Y, Dahlquist E. Bioresource Technol., 2009, 100:3054.
[9] 何涛(He T), 马小波(Ma X B), 徐志宏(Xu Z H), 王周玉(Wang Z Y). 化学进展(Progress in Chemistry), 2016, 28:829.
[10] 马磊(Ma L), 陈彬(Chen B), 吴骊珠(Wu L Z), 彭明丽(Peng M L), 张丽萍(Zhang L P), 佟振合(Tong Z H). 化学进展(Progress in Chemistry), 2004, 16:387.
[11] He W, Fang Z, Tian Q T, Shen W D, Guo K. Ind. Eng. Chem. Res., 2016, 55:1373.
[12] He W, Fang Z, Zhang K, Tu T, Lv N N, Qiu C H, Guo K. Chem. Eng. J., 2018, 331:161.
[13] Hua J W, Guo S Y, Yang Z, Fang Z, Guo K. Org. Process. Res. Dev., 2017, 21:1633.
[14] Wan L, Zhu W T, Qiao K, Sun X N, Fang Z, Guo K. Asian Journal of Organic Chemistry, 2016, 5:920.
[15] Ji D, Fang Z, He W, Zhang K, Luo Z Y, Wang T W, Guo K. ACS Sustainable Chemistry & Engineering, 2015, 3:1197.
[16] Fang Z, He W, Tu T, Lv N N, Qiu C H, Li X, Zhu N, Wan L, Guo K. Chem. Eng. J., 2018, 331:443.
[17] Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Chem. Eng. J., 2018, 333:43.
[18] Szwarc M. Nature, 1956, 178:1168.
[19] Geacintov C, Smid J, Szwarc M. J. Am. Chem. Soc.,1962, 84:2508.
[20] Iwasaki T, Yoshida J I. Macromolecules, 2005, 38:1159.
[21] Li Z, Chen W J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2015, 6:5030.
[22] Peng J Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2017, 8:1495.
[23] Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:177.
[24] Zhu N, Hu X, Zhang Y J, Zhang K, Li Z, Guo K. Polym. Chem., 2016, 7:474.
[25] Hu X, Zhu N, Fang Z, Guo K. Reaction Chemistry & Engineering, 2017, 2:20.
[26] Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Macromol. Rapid Commun., 2018, DOI:10.1002/marc.201700807.
[27] Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:234.
[28] Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K. Polymer, 2016, 84:391.
[29] Kanaoka S, Sawamoto M, Higashimura T. Macromolecules, 1991, 24:2309.
[30] Lu J, Liang H, Zhang R F. Chem. J. Chin. Univ., 2000, 21:1932.
[31] Wu Y X, Xu X, Wu G Y, Lu J. Des. Monomers. Polym., 2003, 6:23.
[32] Olah G A. Angew. Chem. Int. Ed., 1995, 34:1393.
[33] Olah G A. J. Org. Chem., 2001, 66:5943.
[34] Miyamoto M, Sawamoto M, Higashimura T. Macromolecules, 1984, 17:265.
[35] Aoshima S, Higashimura T. Macromolecules, 1989, 22:1009.
[36] Kishimoto Y, Aoshima S, Higashimura T. Macromolecules, 1989, 22:3877.
[37] Puskas J E, Kaszas G. Prog. Polym. Sci., 2000, 25:403.
[38] Inagaki N, Ando T, Sawamoto M. Polym. Repr. Jpn., 2004, 53:2416.
[39] Yoshida J I, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc., 1999, 121:9546.
[40] Yoshida J I, Suga S. Chem.-Eur. J., 2002, 8:2651.
[41] Suga S, Nagaki A, Yoshida J I. Chem. Commun., 2003, 354.
[42] Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J I. J. Am. Chem. Soc., 2004, 126:14702.
[43] Suga S, Nishida T, Yamada D, Nagaki A, Yoshida J I. J. Am. Chem. Soc., 2004, 126:14338.
[44] Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida J I. Angew. Chem. Int. Ed., 2011, 50:5153.
[45] Okajima M, Suga S, Itami K, Yoshida J I. J. Am. Chem. Soc., 2005, 127:6930.
[46] Okajima M, Soga K, Nokami T, Suga S, Yoshida J I. Org. Lett., 2006, 8:5005.
[47] Okajima M, Soga K, Watanabe T, Terao K, Nokami T, Suga S, Yoshida J I. B. Chem. Soc. Jpn., 2009, 82:594.
[48] Nokami T, Ohata K, Inoue M, Tsuyama H, Shibuya A, Soga K, Okajima M, Suga S, Yoshida J I. J. Am. Chem. Soc., 2008, 130:10864.
[49] Nokami T, Watanabe T, Musya N, Suehiro T, Morofuji T, Yoshida J I. Tetrahedron, 2011, 67:4664.
[50] Nagaki A, Takumi M, Tani Y, Yoshida J I. Tetrahedron, 2015, 71:5973.
[51] Wurm F, Frey H. Prog. Polym. Sci., 2011, 36:1.
[52] Tani Y, Takumi M, Moronaga S, Nagaki A, Yoshida J I. Eur. Polym. J., 2016, 80:227.
[53] Cho C G, Feit B A, Webster O W. Macromolecules, 1990, 23:1918.
[54] Iwasaki T, Nagaki A, Yoshida J I. Chem. Commun., 2007:1263.
[55] Nagaki A, Iwasaki T, Kawamura K, Yamada D, Suga S, Ando T, Sawamoto M, Yoshida J I. Chem. Asian J., 2008, 3:1558.
[56] Dittmer T, Gruber F, Nuyken O. Makromol. Chem., 1989, 190:1755.
[57] Iwasaki T, Yoshida J I. Macromol. Rapid Commun., 2007, 28:1219.
[58] Rach S F, Kühn F E. Sustainability, 2009, 1:35.
[59] Schulz R C. Angew. Chem. Int. Ed., 1983, 22:505.
[60] 梁立虎(Liang L H), 吴一弦(Wu Y X), 李艳(Li Y), 徐日炜(Xu R W), 杨万泰(Yang W T), 武冠英(Wu G Y). 高分子学报(Acta Polym. Sin.), 2008, 12:1166.
[61] Zhang L B, Wu Y X, Zhou P, Wu G Y, Yang W T, Yu D S. Chin. J. Polym. Sci., 2011, 29:360.
[62] Mach H R P. Lubr. Sci., 1999, 11:175.
[63] Harrison J J, Mijares C M, Cheng M T, Hudson J. Macromolecules, 2002, 35:2494.
[64] Zhu S, Lu Y C, Wang K, Luo G S. RSC Adv., 2016, 6:9827.
[65] Zhu S, Lu Y C, Wang K, Luo G S. Eur. Polym. J., 2016, 80:219.
[66] Zhu S, Lu Y C, Wang K, Luo G S. RSC Adv., 2016, 6:97983.
[67] Lu Y C, Zhu S, Wang K, Luo G S. Ind. Eng. Chem. Res., 2016, 55:1215.
[68] 郑安呐(Zheng A N), 管涌(Guang Y), 危大福(Wei D F), 徐祥(Xu X), 陈波(Chen B), 苏凌(Su L). 功能高分子学报(J. Func. Polym.), 2017, 30:367.
[69] Baskaran D, Müller A. Prog. Polym. Sci., 2007, 32:173.
[70] Jagur-Grodzinski J. Living and Controlled Polymerization:Synthesis, Characterization, and Properties of the Respective Polymers and Copolymers. NY:Nova Science Publishers, 2006. 213.
[71] Bhattacharyya D N, Lee C L, Smid J, Szwarc M. J. Phys. Chem., 1965, 69:612.
[72] Geacintov C, Smid J, Szwarc M. J. Am. Chem. Soc., 1962, 84:2508.
[73] Hofe T, Maurer A, Müller A H E. GIT Labor Fahz., 1998, 42:1127.
[74] Nagaki A, Tomida Y, Yoshida J I. Macromolecules, 2008, 41:6322.
[75] Wurm F, Wilms D, Klos J, Löwe H, Frey H. Macromol. Chem. Phys., 2008, 209:1106.
[76] Yoshida J I, Saito K, Nokami T, Nagaki A. Synlett, 2011:1189.
[77] Suga S, Yamada D, Yoshida J I. Chem. Lett., 2010, 39:404.
[78] Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J I. Angew. Chem. Int. Ed., 2010, 49:7543.
[79] Tonhauser C, Wilms D, Wurm F, Nicoletti E B, Maskos M, Löwe H, Frey H. Macromolecules, 2010, 43:5582.
[80] Tonhauser C, Obermeier B, Mangold C, Lowe H, Frey H. Chem. Commun., 2011, 47:8964.
[81] Cortese B, Noel T, de Croon M H J M, Schulze S, Klemm E, Hessel V. Macromol. React. Eng., 2012, 6:507.
[82] Natalello A, Morsbach J, Friedel A, Alkan A, Tonhauser C, Müller A H E, Frey H. Org. Process. Res. Dev., 2014, 18:1408.
[83] Morsbach J, Müller A H E, Berger-Nicoletti E, Frey H. Macromolecules, 2016, 49:5043.
[84] Nagaki A, Nakahara Y, Furusawa M, Sawaki T, Yamamoto T, Toukairin H, Tadokoro S, Shimazaki T, Ito T, Otake M, Arai H, Toda N, Ohtsuka K, Takahashi Y, Moriwaki Y, Tsuchihashi Y, Hirose K, Yoshida J I. Org. Process. Res. Dev., 2016, 20:1377.
[85] Iida K, Chastek T Q, Beers K L, Cavicchi K A, Chun J, Fasolka M J. Lab Chip, 2009, 9:339.
[86] Zune C, Jerome R. Prog. Polym. Sci., 1999, 24:631.
[87] Baskaran D. Prog. Polym. Sci., 2003, 28:521.
[88] Wiles D M, Bywater S. Trans. Faraday Soc., 1965, 61:150.
[89] Kunkel D, Müller A H E, Janata M, Lochmann L. Makromol. Chem. Macromol. Sym., 1992, 60:315.
[90] Lochmann L, Kola Drík J, Dosko Dc ilová D, Vozka S, Trekoval J. J. Polym. Sci., Part A:Polym. Chem., 1979, 17:1727.
[91] Baskaran D, Chakrapani S, Sivaram S. Macromolecules, 1995, 28:7315.
[92] Janata M, Lochmann L, Vlcek P, Dybal J, Müller A H E. Makromol. Chem., 1992, 193:101.
[93] Baskaran D, Müller A H E, Sivaram S. Macromolecules, 1999, 32:1356.
[94] Nagaki A, Takahashi Y, Akahori K, Yoshida J I. Macromol. React. Eng., 2012, 6:467.
[95] Nagaki A, Tomida Y, Miyazaki A, Yoshida J I. Macromolecules, 2009, 42:4384.
[96] Nagaki A, Miyazaki A, Tomida Y, Yoshida J I. Chem. Eng. J., 2011, 167:548.
[97] Reetz M T, Knauf T, Minet U, Bingel C. Angew. Chem. Int. Ed., 1988, 27:1373.
[98] Baskaran D, Müller A H E. Macromolecules, 1997, 30:1869.
[99] Baskaran D, Müller A H E. Macromol. Rapid Commun., 2000, 21:390.
[100] Nagaki A, Miyazaki A, Yoshida J I. Macromolecules, 2010, 43:8424.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[3] 张浩, 刘静, 崔崑, 姜涛, 马志. 含胍基抗菌聚合物的合成及应用[J]. 化学进展, 2019, 31(5): 681-689.
[4] 何涛, 马小波, 徐志宏, 王周玉. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838.
[5] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[6] 蒋波 詹晓力 易玲敏 张晓东 许敏 孙立. 六甲基环三硅氧烷(D3)阴离子开环聚合机理与动力学研究[J]. 化学进展, 2010, 22(06): 1169-1176.
[7] 张宏伟,周震涛. 燃料电池聚合物电解质膜[J]. 化学进展, 2008, 20(04): 602-619.
[8] 梁振鹏,王朝阳,孙启龙,童真. LbL层层纳米自组装法制备新型微胶囊*[J]. 化学进展, 2004, 16(04): 485-.
[9] 马磊,陈彬,吴骊珠,彭明丽,张丽萍,佟振合. 微反应器中的不对称光化学反应*[J]. 化学进展, 2004, 16(03): 386-.
[10] 徐志康,朱凌燕,封麟先. 超临界CO2中的高分子合成研究进展*[J]. 化学进展, 1998, 10(02): 202-.
阅读次数
全文


摘要

连续流离子聚合