English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 44-50 DOI: 10.7536/PC170835 前一篇   后一篇

• 综述 •

液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展

汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*   

  1. 四川大学化学工程学院 高分子材料工程国家重点实验室 成都 610065
  • 收稿日期:2017-09-01 修回日期:2017-10-21 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 褚良银,e-mail:chuly@scu.edu.cn E-mail:chuly@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.91434202)资助

Progress on Control of Meso-Scale Structures for Droplet-Template Syntheses of Particle Materials

Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Liangyin Chu*   

  1. State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2017-09-01 Revised:2017-10-21 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91434202).
以液滴模板法来制备颗粒材料,可通过对液滴以及颗粒界面介尺度结构的形成与反应的定向调控来实现对固体颗粒功能材料的高效制备和性能强化。深入研究液滴和固体颗粒界面介尺度结构与反应-扩散过程的相互关系及其定向调控规律,揭示反应与扩散过程的机制及其耦合,对于实现反应过程强化与理性调控具有重要的意义。本文主要介绍了液滴模板法制备颗粒材料过程中的介尺度结构调控的研究新进展,着重介绍了界面两亲分子聚集态介尺度结构对液滴形貌的定向调控及对液滴稳定性的影响、以及液滴界面传递与反应对颗粒材料介尺度结构的定向调控,以期为液滴模板法合成颗粒材料的反应过程强化与理性调控提供科学指导。
For particle materials fabricated by droplet-template syntheses, the efficient fabrication and function enhancement can be realized by rational control of the interfacial meso-scale structures of droplets and particles. Study on the relationship between the interfacial meso-scale structures of droplets and particles and the reaction-diffusion processes, and the investigation of the interconnection between reaction and diffusion, are of significant importance for intensification and rational control of the synthesis processes. This review summarizes the recent progress on control of meso-scale structures for droplet-template syntheses of particle materials, mainly focusing on control of droplet morphology and droplet stability via manipulation of the aggregation meso-scale structures of interfacial amphiphilic molecules, and on control of the meso-scale structure of particles via manipulation of mass-transfer and reaction at/across droplet interfaces. This review provides scientific guidelines for the intensification and rational regulation of reaction processes for droplet-template syntheses of particle materials.
Contents
1 Introduction
2 Control of droplet morphology via manipulation of the aggregation meso-scale structures of interfacial amphiphilic molecules
3 Effect of aggregation meso-scale structures of interfacial amphiphilic molecules and nanoparticles on the droplet stability
4 Control of meso-scale structures of particles via manipulation of mass-transfer and reaction at/across droplet interfaces
5 Conclusion

中图分类号: 

()
[1] Wang W, Zhang M J, Chu L Y. Acc. Chem. Res., 2014, 47:373.
[2] Abbaspourrad A, Carroll N J, Kim S H, Weitz D A. Adv. Mater., 2013, 25:3215.
[3] Xu S Q, Nie Z H, Seo M, Lewis P, Kumacheva E, Stone H A, Garstecki P, Weibel D B, Gitlin I, Whitesides G M. Angew. Chem. Int. Ed., 2005, 44:724.
[4] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Science, 2002, 298:1006.
[5] Zhang M, Wang W, Xie R, Ju X J, Liu Z, Jiang L, Chen Q, Chu L Y. Particuology, 2016, 24:18.
[6] 李洪钟(Li H Z). 过程工程学报(Chinese Journal of Process Engineering), 2006, 6(6):991.
[7] Grzybowski B A. Angew. Chem. Int. Ed., 2011, 50:40.
[8] Almarcha C, Trevelyan P M J, Grosfils P, De Wit A. Phys. Rev. Lett., 2010, 104:044501.
[9] 李静海(Li J H), 胡英(Hu Y), 袁权(Yuan Q). 中国科学:化学(Science China Chemistry), 2014, 44(3):277.
[10] Li J H, Huang W L. Toward Mesoscience-The Principle of Compromise in Competition. Berlin:Springer, 2014.
[11] Li J, Ge W, Wang W, Yang N, Liu X, Wang L, He X, Wang X, Wang J, Kwauk M. From Multiscale Modeling to Meso-science-A Chemical Engineering Perspective. Berlin:Springer, 2013.
[12] Deng N N, Wang W, Ju X J, Xie R, Weitz D A, Chu L Y. Lab Chip, 2013, 13:4047.
[13] Torza S, Mason S G. Science, 1969, 163:813.
[14] Guzowski J, Korczyk P M, Jakiela S, Garstecki P. Soft Matter, 2012, 8:7269.
[15] Deng N N, Mou C L, Wang W, Ju X J, Xie R, Chu L Y. Microfluid. Nanofluid., 2014, 17:967.
[16] Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Angew. Chem. Int. Ed., 2013, 52:8084.
[17] Aronson M P, Princen H M. Nature, 1980, 286:370.
[18] Poulin P, Bibette J. Langmuir, 1998, 14:6341.
[19] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7:21.
[20] Deng N N, Sun S X, Wang W, Ju X J, Xie R, Chu L Y. Lab Chip, 2013, 13:3653.
[21] Deng N N, Sun J, Wang W, Ju X J, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2014, 6:3817.
[22] Sun J, Wang W, He F, Chen Z H, Xie R, Ju X J, Liu Z, Chu L Y. RSC Adv., 2016, 6:64182.
[23] Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. ACS Appl. Mater. Interfaces, 2015, 7:13758.
[24] Ma Q, Song Y, Kim J W, Choi H S, Shum H C. ACS Macro Lett., 2016, 5:666.
[25] He F, Wang W, He X H, Yang X L, Li M, Xie R, Ju X J, Liu Z, Chu L Y. ACS Appl. Mater. Interfaces, 2016, 8:8743.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[3] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[4] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[5] 张雨竹, 詹菁, 刘倩, 周群芳, 江桂斌. 大气细颗粒物引发的神经毒性和分子机理[J]. 化学进展, 2021, 33(5): 713-725.
[6] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[7] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[8] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[9] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[10] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[11] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[12] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
[13] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[14] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[15] 陈茂重, 王斓懿, 于学华, 赵震. 锰基催化剂在催化柴油炭烟燃烧中的应用[J]. 化学进展, 2019, 31(5): 723-737.