English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 979-985 DOI: 10.7536/PC150230 前一篇   后一篇

• 综述与评论 •

喷墨打印中“咖啡环”效应的调控及应用

孙加振1, 邝旻翾2, 宋延林*1,2   

  1. 1. 北京航空航天大学化学与环境学院 北京 100191;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 宋延林 E-mail:ylsong@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 51173190, 21121001), 国家重点基础研究发展计划(973)项目(No. 2013CB9330004)和中国科学院战略性先 导科技专项资助项目(No. XDA09020000)资助

Control and Application of “Coffee Ring” Effect in Inkjet Printing

Sun Jiazhen1, Kuang Minxuan2, Song Yanlin*1,2   

  1. 1. School of Chemistry and Environment, Beihang University, Beijing 100191, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51173190, 21121001), the National Basic Research Program of China (973 Program) (No. 2013CB9330004), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09020000).
喷墨打印是一种将功能材料进行图案化沉积的手段,具有方法简便、成本低廉、灵活快速等优点,成为了最具前景的图案化方法之一,在功能器件研究应用领域受到了广泛关注。“咖啡环”效应是喷墨打印过程中一种常见的现象,它会导致功能材料的不均匀沉积,影响打印图案的分辨率以及所制备功能器件的性能。因此,“咖啡环”效应的研究对于喷墨打印图案精度及功能器件性能极为重要。本文综述了近年来液滴蒸发过程中“咖啡环”效应的研究进展,阐述了“咖啡环”效应的产生机理及抑制“咖啡环”效应的方法,并进一步介绍了抑制或利用“咖啡环”效应在喷墨打印制备高性能器件,如高质量光子晶体图案、高灵敏度传感器、半导体薄膜、透明导电膜、短沟道晶体管等方面的应用。最后,探讨了目前“咖啡环”效应在喷墨打印应用中仍需解决的问题,展望了调控喷墨打印过程中“咖啡环”效应与纳米材料相结合的广阔研究应用空间。这些工作将会对功能材料图案化、高性能器件制备及3D打印等具有重要意义。
Inkjet printing is a material-conserving deposition technique used for liquid phase materials. By virtue of convenience, low-cost, flexibility and speediness, inkjet printing has become one of the most promising candidates for fabricating high-quality patterns. In recent years, inkjet printing has aroused wide attention in functional device research area. The “coffee ring” effect is a common phenomenon in inkjet printing. It directly influences the depositional morphology, which affects the resolution of patterns and the performance of devices. It is very important to research the “coffee ring” effect in inkjet printing. In this paper, we present the recent research progress of the “coffee ring” effect in the process of droplet evaporation. Firstly, the forming mechanism and suppressing methods of “coffee ring” effect are discussed. Secondly, the applications by suppressing or utilizing the “coffee ring” effect in inkjet printing, such as high quality photonic crystal pattern, high sensitive sensor, semiconductor film, transparent conducting film and short-channel transistor are introduced. Finally, a perspective on the remaining challenges of controlling “coffee ring” effect in inkjet printing is proposed. The broad research and application of combining the controlling “coffee ring” effect in inkjet printing and nano-material preparation are discussed. It will be of great significance for patterning, functional device research and 3D printing technology.

Contents
1 Introduction
2 “Coffee ring” effect
2.1 Forming mechanism of “Coffee ring” effect
2.2 Suppressing methods of “Coffee ring” effect
3 Suppressing or utilizing “coffee ring” effect in inkjet printing
3.1 Suppressing “coffee ring” effect in inkjet printing
3.2 Utilizing “coffee ring” effect in inkjet printing
4 Conclusion and outlook

中图分类号: 

()
[1] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22: 673.
[2] Teichler A, Perelaerabc J, Schubert U S. J. Mater. Chem. C, 2013, 1: 1910.
[3] Tian D L, Song Y L, Jiang L. Chem. Soc. Rev., 2013, 42: 5184.
[4] Wang J X, Wang L B, Song Y L, Jiang L. J. Mater. Chem. C, 2013, 1: 6048.
[5] Li J T, Ye F, Vaziri S, Muhammed M, Lemme M C, Östling M. Adv. Mater., 2013, 25: 3985.
[6] Minemawari H, Yamada T, Matsui H, Tsutsumi J, Simon H S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364.
[7] Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290: 2123.
[8] Ito T, Okazaki S. Nature, 2000, 406: 1027.
[9] Geissler M, Xia Y N. Adv. Mater., 2004, 16: 1249.
[10] Guo L J. Adv. Mater., 2007, 19: 495.
[11] Yan X, Yao J M, Lu G, Chen X, Zhang K, Yang B. J. Am. Chem. Soc., 2004, 126: 10510.
[12] Kuang M X, Wang L B, Song Y L. Adv. Mater., 2014, 26: 6950.
[13] 邝旻翾(Kuang M X), 王京霞(Wang J X),王利彬(Wang L B), 宋延林(Song Y L). 化学学报(Acta Chimica Sinica), 2012, 18: l889.
[14] Nie Z H, Eugenia K. Nat. Mater., 2008, 7: 277.
[15] Menard E, Meitl M A, Sun Y G, Park J U, Shir D J, Nam Y S, Jeon S, Rogers J A. Chem. Rev., 2007, 107: 1117.
[16] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Nature, 1997, 389: 827.
[17] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Phys. Rev. E, 2000, 62: 756.
[18] Deegan R D. Phys. Rev. E, 2000, 61: 475.
[19] Yunker P J, Still T, Lohr M A, Yodh A G. Nature, 2011, 476: 308.
[20] Yunker P J, Lohr M A, Still T, Borodin A, Durian D J, Yodh A G. Phys. Rev. Lett., 2013, 110: 035501.
[21] Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M. Nat. Mater., 2006, 5: 265.
[22] Soltman D, Subramanian V. Langmuir, 2008, 24: 2224.
[23] Harris D J,Hu H,Conrad J C, Lewis J A. Phys. Rev. Lett., 2007, 98: 148301.
[24] Keseroglu K, Culha M. J. Colloid Interface Sci., 2011, 360: 8.
[25] Van den Berg A M J, de Laat A W M, Smith P J, Perelaera J, Schubert U S. J. Mater. Chem., 2007, 17: 677.
[26] Hu H, Larson R G. J. Phys. Chem. B, 2006, 110: 7090.
[27] Kim D, Jeong S, Park B K, Moon J. Appl. Phys. Lett., 2006, 89: 264101.
[28] Still T, Yunker P J, Yodh A G. Langmuir, 2012, 28: 4984.
[29] Sempels W, Dier R D, Mizuno H, Hofkens J, Vermant J. Nat. Commun., 2013, 4: 1757.
[30] Ko H Y, Park J, Shin H, Moon J. Chem. Mater., 2004, 16: 4212.
[31] Li Y F, Sheng Y J, Tsao H K. Langmuir, 2013, 29: 7802.
[32] Wang L B, Li F Y, Kuang M X, Wang J X, Huang Y, Jiang L, Song Y L. Small, DOI: 10.1002/smll.201403355.
[33] Eral H B, Augustine D M, Duits M H G, Mugele F. Soft Matter, 2011, 7: 4954.
[34] Huang Y, Zhou J M, Su B, Shi L, Wang J X, Chen S R, Wang L B, Zi J, Song Y L, Jiang L. J. Am. Chem. Soc., 2012, 134: 17053.
[35] McGrath J G, Bock R D, Cathcart J M, Lyon L A. Chem. Mater., 2007, 19: 1584.
[36] Cui L Y, Zhang Y Z, Wang J X, Ren Y B, Song Y L, Jiang L. Macromol. Rapid. Comm., 2009, 30: 598.
[37] Cui L Y, Li Y F, Wang J X, Tian E T, Zhang X Y, Zhang Y Z, Song Y L, Jiang L. J. Mater. Chem., 2009, 19: 5499.
[38] Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2: 34.
[39] Bao B, Li M Z, Li Y, Gu Z K, Zhang X Y, Jiang L, Song Y L. Small, DOI: 10.1002/smll.201403005.
[40] Yang Q, Deng M M, Li H Z, Li M Z, Zhang C, Shen W Z, Li Y N, Guo D, Song Y L. Nanoscale, 2015, 7: 421.
[41] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20: 3554.
[42] Ge J P, Yin Y D. Angew. Chem., 2011, 50: 1492.
[43] Wang L B, Wang J X, Huang Y, Liu M J, Kuang M X, Li Y F, Jiang L, Song Y L. J. Mater. Chem., 2012, 22: 21405.
[44] Shen W Z, Li M Z, Ye C Q, Jiang L, Song Y L. Lab Chip, 2012, 12: 3089.
[45] Hou J, Zhang H C, Yang Q, Li M Z, Song Y L, Jiang L. Angew. Chem., 2014, 126: 5901.
[46] Hou J, Zhang H C, Yang Q, Li M Z, Jiang L, Song Y L, Small, DOI: 10.1002/smll.201403640.
[47] Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 11: 11094.
[48] Shtein M, Peumans P, Benziger J B, Forrest S R. Adv. Mater., 2004, 16: 1615.
[49] Lim J A, Lee W H, Lee H S, Lee J H, Park Y D, Cho K. Adv. Funct. Mater., 2008, 18: 229.
[50] Layani M M, Kamyshny A, Magdassi S. Nanoscale, 2014, 6: 5581.
[51] Hecht D S, Hu L B, Irvin G. Adv. Mater., 2011, 23: 1482.
[52] Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S. ACS Nano, 2009, 3: 3537.
[53] Layani M, Berman R, Magdassi S. ACS Appl. Mater. Interfaces, 2014, 6: 18668.
[54] Zhang Z L, Zhang X Y, Xin Z Q, Deng M M, Wen Y Q, Song Y L. Adv. Mater., 2013, 25: 6714.
[55] Zhang Z L, Zhu W Y. J. Mater. Chem. C, 2014, 2: 9587.
[56] Bromberg V, Ma S Y, Singler T J. Appl. Phys. Lett., 2013, 102: 214101.
[57] Jung W J, Kim Y W, Yoo J Y. Anal. Chem., 2009, 81: 8256.
[58] Choi S, Stassi S, Pisano A P, Zohdi T I. Langmuir, 2010, 14: 11690.
[59] Wong T S, Chen T H, Shen X Y, Ho C M. Anal. Chem., 2011, 83: 1871.
[60] Lee K H, Kim S M, Jeong H, Jung G Y. Soft Matter, 2012, 8: 465.
[61] Eom D S, Chang J, Song Y W, Lim J A, Han J T, Kim H, Cho K. J. Phys. Chem. C, 2014, 118: 27081.
[62] Zhang L, Liu H T, Zhao Y, Sun X N, Wen Y G, Guo Y L, Gao X K, Di C A, Yu G, Liu Y Q. Adv. Mater., 2012, 24: 436.
[63] Wang H L, Cheng C, Zhang L, Liu H T, Zhao Y, Guo Y L, Hu W P, Yu G, Liu Y Q. Adv. Mater., 2014, 26: 4683.
[64] He M , Zhang Q L , Zeng X P , Cui D P, Chen J, Li H L, Wang J J, Song Y L. Adv. Mater., 2013, 25: 2291.
[65] Yang X, Chasity V H, Shah J, Sun Y. Soft Matter, 2012, 8: 9205.
[66] Liu M J, Wang J X, He M, Wang L B, Li F Y, Jiang L, Song Y L. ACS Appl. Mater. Interfaces, 2014, 6: 13344.
[67] Li J T, Ye F, Vaziri S, Muhammed M, Lemme M C, Östling M. Adv. Mater., 2013, 25: 3985.
[68] Wei Z H, Chen H N, Yan K Y, Yang S H. Angew. Chem., 2014, 53: 13239.
[69] Galliker P, Schneider J, Eghlidi H, Kress1 S, Sandoghdar V, Poulikakos D. Nat.Commun., 2012, 3: 890.
[1] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[2] 张奇, 项徽清, 刘建国, 曾晓雁. 喷墨打印制备高性能薄膜晶体管的材料体系[J]. 化学进展, 2019, 31(10): 1417-1424.
[3] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[4] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[5] 刘瑞来, 刘海清*, 刘俊劭, 江慧华. 静电纺丝制备图案化无机纳米纤维[J]. 化学进展, 2012, 24(08): 1484-1496.
[6] 梁山,陈淼. 图案化TiO2薄膜的制备技术[J]. 化学进展, 2008, 20(11): 1659-1665.
[7] 黄春玉,吕男,迟力峰. 利用Langmuir-Blodgett技术构筑表面微结构的方法*[J]. 化学进展, 2007, 19(06): 852-859.
[8] 刘定斌,谢赟燕,邵华武,蒋兴宇. 利用表面上的小分子控制细胞黏附[J]. 化学进展, 2007, 19(012): 1965-1971.
[9] 倪刚,杨武,何晓燕,薄丽丽,吕维莲. 表面引发聚合反应研究进展*[J]. 化学进展, 2005, 17(06): 1074-1080.