English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1207-1223 DOI: 10.7536/PC160416 前一篇   后一篇

• 综述与评论 •

多相分散体系中气泡/液滴聚并和破碎的群平衡模拟

覃成鹏1,2, 杨宁1*   

  1. 1. 中国科学院过程工程研究所 多相复杂系统国家重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2016-04-01 修回日期:2016-05-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 杨宁 E-mail:nyang@ipe.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.91434121)资助

Population Balance Modeling of Breakage and Coalescence of Dispersed Bubbles or Droplets in Multiphase Systems

Qin Chengpeng1,2, Yang Ning1*   

  1. 1. State Key Laborary of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-01 Revised:2016-05-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.91434121)
多相分散体系中气泡/液滴聚并和破碎过程的模拟对于过程工业中离散相粒径分布的调控具有极为重要的意义。群平衡模型(population balance model, PBM)是模拟离散相聚并和破碎的常用方法。然而由于多相分散体系的复杂性,PBM中现有的聚并和破碎模型通常基于现象模型、统计分析、经验关联式或半理论半经验方法,尚未有模型能够全面地考虑流场和物性对聚并或破碎过程的物理约束,从而使准确预测各类工况的聚并与破碎现象成为挑战性的课题。本文总结了目前针对气-液/液-液体系破碎和聚并过程的机理分析、主流模型、群平衡方程的求解方法以及PBM在气-液和液-液体系中的应用,并评述了各种模型的研究现状和未来发展方向。
Modeling of breakage and coalescence of dispersed phases such as bubbles or droplets in multiphase systems is of paramount importance to the control of the dispersed phase size distribution in process industry. Population balance model (PBM) has become a rountine tool to simulate the breakage, coalescence and size distribuiton of dispersed phase. However, the current kernel functions for breakage and coalescence in PBM are either derived from statistical models or based on some phenomenological models, empirical correlations or semi-theoretical methods, since the physics of breakage and coalescence in multi-phase systems is complex. As a result, few models could completely considers all of the physical constraints relevant to the complex flow field and material properties, and it is still a challenging issue to accurately predict the breakage and coalescence for different operating conditions. This article gives a systematic overview of the mechanisms and models about the breakage and coalescence of bubbles or droplets, and the numerical algothirm for population balance equations as well as the application of PBM simulation in gas-liquid or liquid-liquid systems. Finally, the state-of-the-art and future development of PBM are analyzed.

Contents
1 Introduction
2 Population balance model
2.1 Coalecence rate
2.2 Breakage rate and daughter size distribution
3 Solving population balance equation
3.1 Class method
3.2 Method of moments
4 Application of population balance model
4.1 Application in gas-liquid systems
4.2 Application in liquid-liquid systems
5 Conclusion and outlook

中图分类号: 

()
[1] Liao Y,Lucas D.Chemical Engineering Science,2010,65:2851.
[2] Liao Y,Lucas D.Chemical Engineering Science,2009,64:3389.
[3] 李静海(Li J H),胡英(Hu Y),袁权(Yuan Q).中国科学.化学(Scientia Sinica Chimica),2014,44(3):277.
[4] Hulburt H,Katz S.Chemical Engineering Science,1964,19:555.
[5] Randolph A.The Canadian Journal of Chemical Engineering,1964,42:280.
[6] Ramkrishna D.Population Balances:Theory and Applications to Particulate Systems in Engineering.Academic Press San Diego,2000.
[7] Coulaloglou C,Tavlarides L.Chemical Engineering Science,1977,32:1289.
[8] Chen P,Sanyal J,Dudukovic M P.Chemical Engineering Science,2005,60:1085.
[9] Chesters A K.Chemical Engineering Research&Design:Transactions of the Institution of Chemical Engineers,1991,69:259.
[10] Kirkpatrick R,Lockett M.Chemical Engineering Science,1974,29:2363.
[11] Luo H,Svendsen H.Chemical Engineering Communications,1996,145:145.
[12] Prince M J,Blanch H W.AIChE Journal,1990,36:1485.
[13] Ribeiro Jr C P,Mewes D.Chemical Engineering Science,200661:5704.
[14] Coulaloglou C,Tavlarides L.AIChE Journal,1976,22:289.
[15] Kentish S E,Stevens G W,Pratt H.Industrial&Engineering Chemistry Research,1998,37:1099.
[16] Wright H,Ramkrishna D.AIChE Journal,1994,40:767.
[17] Jo D,Revankar S T.International Journal of Multiphase Flow,2011,37:1003.
[18] Wang T,Wang J,Jin Y.Industrial&Engineering Chemistry Research,2005,44:7540.
[19] Wu Q,Kim S,Ishii M,Beus S G.International Journal of Heat and Mass Transfer,1998,41:1103.
[20] Alopaeus V,Koskinen J,Keskinen K I.Chemical Engineering Science,1999,54:5887.
[21] Lundin M D,McCready M J.Chemical Engineering Science,2009,64:4060.
[22] Maaä S,Gäbler A,Zaccone A,Paschedag A R,raume M.Chemical Engineering Research and Design,2007,85:703.
[23] Kennard E.H.Kinetic Theory of Gases:with an Introduction to Statistical Mechanics.McGraw-Hill Book Company,inc.,1938.
[24] Saffman P G,Turner J.Journal of Fluid Mechanism,1956,1:16.
[25] Tavlarides L L,Stamatoudis M.Advances in Chemical Engineering,1981,11:199.
[26] Tsouris C,Tavlarides L.AIChE Journal,1994,40:395.
[27] Luo H.Coalescence,Breakup and Liquid Circulation in Bubble Column Reactors,Department of Energy.Norges Tekniske Hoegskole,Trondheim,1993.
[28] Lehr F,Millies M,Mewes D.AIChE Journal,2002,48:2426.
[29] Laari A,Turunen I.Chemical Engineering Research and Design,2005,83:881.
[30] Schmidt S A,Simon M,Attarakih M M,Lagar G L,Bart H J.Chemical Engineering Science,2006,61:246.
[31] Bhole M R,Joshi J B,Ramkrishna D.Chemical Engineering Science,2008,63:2267.
[32] Kamp A,Chesters A,Colin C,Fabre J.International Journal of Multiphase Flow,2001,27:1363.
[33] Hibiki T,Ishii M.International Journal of Heat and Mass Transfer,2000,43:2711.
[34] Wang T,Wang J,Jin Y.Chemical Engineering Science,2005,60:6199.
[35] Yao W,Morel C.International Journal of Heat and Mass Transfer,2004,47:307.
[36] Friedlander S K.Smoke,Dust and Haze.New York:Wiley,1977.
[37] Clift R,Grace J R,Weber M E.Bubbles,Drops,and Particles.Academic Press,1978.
[38] Fan L S,Tsuchiya K.Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions.Butterworth-Heinemann,1990.
[39] Friedlander S K.Smoke,Dust,and Haze.New York:Oxford University Press,2000.
[40] Delhaye J M.Comptes Rendus de l'Académie des Sciences-Series ⅡB-Mechanics,2001,329:473.
[41] Hibiki T,Ishii M.Nuclear Engineering and Design,2000,202:39.
[42] Hibiki T,Takamasa T,Ishii M.Journal of Nuclear Science and Technology,2001,38:614.
[43] Colella D,Vinci D,Bagatin R,Masi M,Abu Bakr E.Chemical Engineering Science,1999,54:4767.
[44] de Nevers N,Wu J L.AIChE Journal,1971,17:182.
[45] Kalkach-Navarro S,Lahey R,Drew D.Nuclear Engineering and Design,1994,151:15.
[46] Sovova H.Chemical Engineering Science,1981,36:1567.
[47] B?k A,Podgórska W.Chemical Engineering Science,2012,74:181.
[48] Lehr F,Mewes D.Chemical Engineering Science,2001,56:1159.
[49] Doubliez L.International Journal of Multiphase Flow,1991,17:783.
[50] Bordel S,Mato R,Villaverde S.Chemical Engineering Science,2006,61:3663.
[51] Ross S L.Thesis (Ph.D.)-University of Michigan (Measurements and Models of the Dispersed Phase Mixing Process),1971.
[52] Lee C H,Erickson L,Glasgow L.Chemical Engineering Communications,1987,61:181.
[53] Narsimhan G,Nejfelt G,Ramkrishna D.AIChE Journal,1984,30:457.
[54] Sathyagal A,Ramkrishna D,Narsimhan G.Chemical Engineering Science,1996,51:1377.
[55] Luo H,Svendsen H.AIChE Journal,1996,42:1225.
[56] Narsimhan G,Gupta J,Ramkrishna D.Chemical Engineering Science,1979,34:257.
[57] Hagesaether L,Jakobsen H A,Svendsen H F.Chemical Engineering Science,2002,57:3251.
[58] Martinez-Bazan C,Montanes J,Lasheras J.Journal of Fluid Mechanics,1999,401:157.
[59] Kostoglou M,Karabelas A.Chemical Engineering Science,2005,60:6584.
[60] Wang T,Wang J,Jin Y.Chemical Engineering Science,2003,58:4629.
[61] Zhao H,Ge W.Chemical Engineering Science,2007,62:109.
[62] Harold P G.Chemical Engineering Communications,1982,14:225.
[63] Lo S,Zhang D.The Journal of Computational Multiphase Flows,2009,1:23.
[64] Elemans P,Bos H,Janssen J,Meijer H.Chemical Engineering Science,1993,48:267.
[65] Ishii M,Hibiki T.Thermo-Fluid Dynamics of Two-Phase Flow.Springer Verlag,2010.
[66] Sun X,Kim S,Ishii M,Beus S G.Nuclear Engineering and Design,2004,230:3.
[67] Hesketh R,Etchells A,Russell T.Chemical Engineering Science,1991,46:1.
[68] Lasheras J C,Eastwood C,Martinez-Bazán C,Montañés J L.International Journal of Multiphase Flow,2002,28:247.
[69] Valentas K J,Bilous O,Amundson N R.Analysis of breakage in Dispersed Phase Systems.Industrial&Engineering Chemistry Fundamentals,1966,5:271.
[70] Chatzi E G,Gavrielides A D,Kiparissides C.Industrial&Engineering Chemistry Research,1989,28:1704.
[71] Hsia M A,Tavlarides L L.The Chemical Engineering Journal,1983,26:189.
[72] Ross S L,Verhoff F H,Curl R L.Industrial&Engineering Chemistry Fundamentals,1978,17:101.
[73] Verhoff F H,Ross S L,Curl R L.Industrial&Engineering Chemistry Fundamentals,1977,16:371.
[74] Alopaeus V,Koskinen J I,Keskinen K,Majander J.Chemical Engineering Science,2002,57:1815.
[75] Nambiar D,Kumar R,Das T,Gandhi K.Chemical Engineering Science,1992,47:2989.
[76] 王铁峰(Wang T F).清华大学博士论文(Doctoral Dissertation of Tsinghua University),2004.
[77] Scott W T.Journal of Atmospheric Sciences,1968,25:54.
[78] Patil D,Andrews J.Chemical Engineering Science,1998,53:599.
[79] Kumar S,Ramkrishna D.Chemical Engineering Science,1996,51:1311.
[80] Kumar S,Ramkrishna D.Chemical Engineering Science,1996,51:1333.
[81] McGraw R.Aerosol Science and Technology,1997,27:255.
[82] Liffman K.Journal of Computational Physics,1992,100:116.
[83] Chen M Q,Hwang C,Shih Y P.Computers&Chemical Engineering,1996,20:131.
[84] Dorao C A,Jakobsen H A.Computers&Chemical Engineering,2006,30:535.
[85] Lo S.Application of Population Balance to CFD Modeling of Bubbly Flow Via the MUSIG Model.AEAT-1096,AEA Technology,1996.
[86] Krepper E,Lucas D,Prasser H M.Nuclear Engineering and Design,2005,235:597.
[87] Bannari R,Kerdouss F,Selma B,Bannari A,Proulx P.Computers&Chemical Engineering,2008,32:3224.
[88] Podila K,Al Taweel A,Koksal M,Troshko A,Gupta Y.Chemical Engineering Science,2007,62:7151.
[89] Sanyal J,Marchisio D L,Fox R O,Dhanasekharan K.Industrial&Engineering Chemistry Research,2005,44:5063.
[90] Selma B,Bannari R,Proulx P.Chemical Engineering Science,2010,65:1925.
[91] Marchisio D L,Fox R O.Journal of Aerosol Science,2005,36:43.
[92] Yuan C,Fox R O.Journal of Computational Physics,2011,230:8216.
[93] Marchisio D L,Vigil R D,Fox R O.Journal of Colloid and Interface Science,2003,258:322.
[94] Marchisio D L,Vigil R D,Fox R O.Chemical Engineering Science,2003,58:3337.
[95] Rosner D E,McGraw R,Tandon P.Industrial&Engineering Chemistry Research,2003,42:2699.
[96] Rosner D E,Pyykönen J J.AIChE Journal,2002,48:476.
[97] Wright D L,McGraw R,Rosner D E.Journal of Colloid and Interface Science,2001,236:242.
[98] Fan R,Marchisio D L,Fox R O.Powder Technology,2004,139:7.
[99] Dutta A,Constales D,Heynderickx G J.Chemical Engineering Science,2012,83:93.
[100] Fox R O,Laurent F,Massot M.Journal of Computational Physics,2008,227:3058.
[101] Zucca A,Marchisio D L,Vanni M,Barresi A A.AIChE Journal,2007,53:918.
[102] 苏军伟(Su J W),顾兆林(Gu Z L),李云(Li Y).西安交通大学学报(Journal of Xi'an Jiaotong University),2007,41(5):621.
[103] Cheung S C P,Yeoh G H,Tu J.The Journal of Computational Multiphase Flows,2009.1:161.
[104] Mazzei L.Chemical Engineering Science,2011,66:3628.
[105] Yang N,Wu Z,Chen J,Wang Y,Li J.Chemical Engineering Science,2011,66:3212.
[106] Cheung S C P,Yeoh G H,Tu J Y.Chemical Engineering and Processing,2007,46:742.
[107] Jo D,Revankar S T.International Journal of Multiphase Flow,2011,37:1003.
[108] Laakkonen M,Alopaeus V,Aittamaa.Chemical Engineering Science,2006,61:218.
[109] 肖颀(Xiao Q).西安交通大学博士论文(Doctoral Dissertation of Xi'an Jiaotong University),2015.
[110] Vankova N,Tcholakova S,Denkov N D,Ivanov I B,Vulchev V D,Danner T.Journal of Colloid and Interface Science,2007,312:363.
[111] Vankova N,Tcholakova S,Denkov N D,Vulchev V D,Danner T.Journal of Colloid and Interface Science,2007,313:612.
[112] Håkansson A,Trägårdh C,Bergenståhl B.Journal of Colloid and Interface Science,2012,374:25.
[113] Håkansson A,Innings F,Revstedt J,Trägårdh C,Bergenståhl B.Chemical Engineering Science,2012,75:309.
[114] Håkansson A,Trägårdh C,Bergenståhl B.Chemical Engineering Science,2009,64:2915.
[115] Håkansson A,Innings F,Trägårdh C,Bergenståhl B.Chemical Engineering Science,2013,91:44.
[116] Jasińska M,Ba?dyga J,Hall S,Pacek A W.Chemical Engineering and Processing,2014,84:45.
[117] Qin C,Chen C,Xiao Q,Yang N,Yuan C,Kunkelmann C,Cetinkaya M,Mülheims K,Chemical Engineering Science,2016,755:16.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[5] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[6] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[7] 李恩泽, 杜志平, 王波, 成怀刚, 程芳琴. 高离子强度下可溶盐浮选机理[J]. 化学进展, 2016, 28(9): 1417-1425.
[8] 孙加振, 邝旻翾, 宋延林. 喷墨打印中“咖啡环”效应的调控及应用[J]. 化学进展, 2015, 27(8): 979-985.
[9] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[10] 李大勇*, 王伟杰, 赵学增*. 固液界面纳米气泡研究[J]. 化学进展, 2012, 24(08): 1447-1455.
[11] 张雪花,胡钧. 固液界面纳米气泡的研究进展[J]. 化学进展, 2004, 16(05): 673-.