English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1198-1207 DOI: 10.7536/PC121161 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

固定化酶微反应器的制备及应用

申刚义1*, 于婉婷1, 刘美蓉2, 崔勋1,3*   

  1. 1. 中央民族大学中国少数民族传统医学研究院 北京 100081;
    2. 中国科学院化学研究所 北京 100190;
    3. 韩国又石大学汉药科 全州 565-701 韩国
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 申刚义, 崔勋 E-mail:sgy@iccas.ac.cn; cuixunws@hotmail.com
  • 基金资助:

    国家自然科学基金项目(No.81001595)、中央高校基本科研业务费专项资金(中央民族大学自主科研项目No.0910KYQN67)和校级课题项目(No.60344302)资助

Preparation and Application of Immobilized Enzyme Micro-Reactor

Shen Gangyi1*, Yu Wanting1, Liu Meirong2, Cui Xun1,3*   

  1. 1. Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    3. Department of Oriental Pharmacy, Woosuk University,Wanju-gun,Jeonbuk 565-701,South Korea
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

固定化酶微反应器是将生物分子固定技术与生化微反应相结合制备的一种固定化催化装置。这种微型化的反应系统由于兼具固定化酶的特异性催化、可重复利用及微分析的低消耗、易分离等优点,在生命科学如蛋白质组学、酶抑制剂的筛选、生物催化等领域具有非常重要的作用。固定化酶微反应器的性能与其制作方法关系密切。本文着重从酶与固定化载体结合方式的角度,对近年来固定化酶微反应器的各种制备方法和应用进行了较为详细的评述。重点讨论了各种方法的优缺点和最新的发展情况,并对其发展前景进行了展望。

As one kind of new biochemical reaction device, immobilized enzyme micro-reactor is the combination of biomolecule immobilizing technique and modern micro-reaction method. In view of its advantages in efficiency, economy and addressable recognition specially, micro-reactor plays a significant role in the research of life science, such as proteomics, screening of enzyme inhibitors, biocatalysis and so on. With the development of immobilizing materials and fabrication methods, the performance of enzyme micro-reactor has been improved greatly, and enzyme micro-reactor has been applied to many research fields. This article focuses on the preparation methods and the applications of immobilized enzyme micro-reactor for the past few years. The advantages and shortcomings of the current state-of-the-art preparation methods are particularly discussed. In addition, the prospects of its future study are outlined. Contents
1 Introduction
2 Preparation of immobilized enzyme micro-reactor
2.1 Convalent bonding
2.2 Physical adsorption
2.3 Encapsulation
2.4 Metal-ion chelated adsorption
2.5 Biological binding
3 Applications
4 Outlook

中图分类号: 

()

[1] Weetall H H. Biochim. Biophys. Acta, 1970, 212: 1-7
[2] Zhang Z B, Wang F J, Xua B, Qin H Q, Ye M L, Zou H F. J. Chromatogr. A, 2012, 1256: 136- 143
[3] Wang F J, Wei X L, Zhou H, Liu J, Figeys D, Zou H F. Proteomics, 2012, 12: 3129-3137
[4] Zhang X M, Liu B H, Zhang L H, Zou H F, Cao J, Gao M X, Tang J, Li Y, Yang P Y, Zhang Y K. Sci. China Chem., 2010, 53(4): 685-694
[5] Krenkova J, Foret F. Electrophoresis, 2004, 25: 3550-3563
[6] 马俊锋(Ma J F), 段继诚(Duan J C), 梁振( Liang Z), 张丽华(Zhang L H), 张维冰(Zhang W B), 张玉奎(Zhang Y K).分析化学(Chinese J. Anal. Chem.), 2006, 11: 1649-1655
[7] Simonet B M, Ríós A, Valcárcel M. Electrophoresis, 2004, 25: 50-56
[8] Thelhan S, Jadaud D, Wainer I W. Chromatographia, 1989, 28: 551-555
[9] Melander C, Momcilovic D, Nilsson C, Bengtsson M, Schagerlǒf H, Tjerneld F, Laurell T, Reimann C T, Gorton L. Anal. Chem., 2005, 77: 3284-3291
[10] 郭忠(Guo Z), 张清春(Zhang Q C), 雷政登(Lei Z D), 孔亮(Kong L), 毛希琴(Mao X Q), 邹汉法(Zou H F). 高等学校化学学报(Chem. J. Chinese Universities), 2002, 23(7): 1277-1280
[11] Costantini F, Benetti E M, Reinhoudt D N, Huskens J, Vancso G J, Verboom W. Lab Chip, 2010, 10(24): 3407-3412
[12] Yamaguch H, Miyazaki M, Honda T, Briones-Nagata M P, Arima K, Maeda H. Electrophoresis, 2009, 30: 3257-3264
[13] Zhang Q, Xu J J, Chen H Y. Electrophoresis, 2006, 27: 4943-4951
[14] Lee J, Soper S A, Murray K K. Analyst, 2009, 134: 2426-2433
[15] Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Fütterer C, Taverna M, Viovy J L. Lab Chip, 2005, 5: 935-942
[16] Nel A L, Minc N, Smadja C, Slovakova M, Bilkova Z, Peyrin J M, Viovy J L, Taverna M. Lab Chip, 2008, 8: 294-301
[17] Li S, Yao G P, Qi D W, Li Y, Deng C H, Yang P Y, Zhang X M. Anal. Chem., 2008, 80: 3655-3665
[18] Li Y, Xu X Q, Yan B, Deng C H, Yu W J, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6: 2367-2375
[19] Li Y, Xu X Q, Deng C H, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6: 3849-3855
[20] 辛宝娟(Xin B J), 刑国文(Xing G W). 化学进展(Prog. Chem.), 2010, 22: 593-602
[21] Adalberto P R, dos Santos F J, Golfeto C C, Iemma M R C, de Souzaa D H F, Cass Q B. Analyst, 2012, 137: 4855-4859
[22] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Anal. Chem., 1996, 68: 3498-3501
[23] Peterson D S, Rohr T, Svec F, Fréchet J M J. Anal. Chem., 2002, 74: 4081-4088
[24] Dulay M T, Baca Q J, Zare R N. Anal. Chem., 2005, 77: 4604-4610
[25] Feng S, Ye M L, Jiang X G, Jin W H, Zou H F. J. Proteome Res., 2006, 5: 422-428
[26] Chen Y Z, Wu M H, Wang K Y, Chen B, Yao S Z, Zou H F, Nie L H. J. Chromatogr. A, 2011, 1218: 7982-7988
[27] Guo Z, Xu S Y, Lei Z D, Zou H F, Guo B C. Electrophoresis, 2003, 24: 3633-3639
[28] Spro J, Sinz A. Anal. Chem., 2010, 82: 1434-1443
[29] Logan T C, Clark D S, Stachowiak T B, Svec F, Fréchet J M J. Anal. Chem., 2007, 79: 6592-6598
[30] Krenkova J, Lacher N A, Svec F. Anal. Chem., 2009, 81: 2004-2012
[31] Abele S, Smejkal P, Yavorska O, Foret F, Macka M. Analyst, 2010, 135: 477-481
[32] Hayes J D, Malik A. Anal. Chem., 2000, 72: 4090-4099
[33] Ma J F, Liang Z, Qiao X Q, Deng Q L, Tao D Y, Zhang L H, Zhang Y K. Anal. Chem., 2008, 80: 2949-2956
[34] 吴帅宾(Wu S B), 马俊锋(Ma J F), 杨开广(Yang K G), 刘晋湘(Liu J X), 梁振(Liang Z), 张丽华(Zhang L H), 张玉奎(Zhang Y K). 中国科学(Science China), 2010, 40(9): 874-879
[35] Wu M H, Zhang H Q, Wang Z X, Shen S W, Le X C, Li X F. Chem. Commun., 2013, 49: 1407-1409
[36] Tang Z M, Kang J W. Anal. Chem., 2006, 78: 2514-2520
[37] Tang Z M, Wang T D, Kang J W. Electrophoresis, 2007, 28: 2981-2987
[38] Liu A L, Zhou T, He F Y, Xu J J, Lu Y, Chen H Y, Xia X H. Lab Chip, 2006, 6: 811-818
[39] Ji J, Zhang Y H, Zhou X Q, Kong J L, Tang Y, Liu B H. Anal. Chem., 2008, 80: 2457-2463
[40] Liu Y, Lu H J, Zhong W, Song P Y, Kong J L, Yang P Y, Girault H H, Liu B H. Anal. Chem., 2006, 78: 801-808
[41] Jiao J, Miao A, Zhang X, Cai Y, Lu Y, Zhang Y, Lu H. Analyst, 2013, 138: 1645-1648
[42] Bao H, Chen Q, Zhang L, Chen G. Analyst, 2011, 138: 5190-5196
[43] Feng S, Yang N, Pennathur S, Goodison S, Lubman D M. Anal. Chem., 2009, 81: 3776-3783
[44] Mao H B, Yang T L, Cremer P S. Anal. Chem., 2002, 74: 379-385
[45] Holden M A, Jung S Y, Cremer P S. Anal. Chem., 2004, 76: 1838-1843
[46] Vong T, Schoffelen S, van Dongen S F M, van Beek T A, Zuilhof H, van Hest J C M. Chem. Sci., 2011, 2: 1278-1285
[47] Sakai-Kato K, Kato M, Toyo'oka T. Anal. Chem., 2002, 74: 2943-2949
[48] Sakai-Kato K, Kato M, Toyo'oka T. Anal. Chem., 2003, 75: 388-393
[49] Qu H Y, Wang H T, Huang Y, Zhong W, Lu H J, Kong J L, Yang P Y, Liu B H. Anal. Chem., 2004, 76: 6426-6433
[50] Huang Y, Shan W, Liu B H, Liu Y, Zhang Y H, Zhao Y, Lu H J, Tang Y, Yang P Y. Lab Chip, 2006, 6: 534-539
[51] Liu Y, Wang H T, Lu Q P, Qu H Y, Liu B H, Yang P Y. Lab Chip, 2010, 6: 2887-2893
[52] Jang E, Son K J, Kim B, Koh W G. Analyst, 2010, 135: 2871-2878
[53] Ikemoto H, Chi Q J, Ulstrup J. J. Phys. Chem., 2010, 114: 16174-16180
[54] Shui W Q, Fan J, Yang P Y, Liu C L, Zhai J J, Lei J, Yan Y, Zhao D Y, Chen X. Anal. Chem., 2006, 78: 4811-4819
[55] Kataoka S, Takeuchi Y, Harada A, Yamada M, Endo A. Green Chem., 2010, 12: 331-337
[56] Cosford R J O, Kuhr W G. Anal. Chem., 1996, 68: 2164-2169
[57] Licklider L, Kuhr W G. Anal. Chem., 1998, 70: 1902-1908
[58] Peterson D S, Rohr T, Svec F, Fréchet J M J. J. Proteome Res., 2002, 1: 563-568
[59] Peterson D S, Rohr T, Svec F, Fréchet J M J. Anal. Chem., 2003, 75: 5328-5335
[60] Liu Y, Xue Y, Ji J, Chen X, Kong J L, Yang P Y, Girault H H, Liu B H. Mol. Cel. Proteomics, 2007, 6: 1428-1436
[61] Ma J F, Liu J X, Sun L L, Gao L, Liang Z, Zhang L H, Zhang Y K. Anal. Chem., 2009, 81: 6534-6540
[62] Yuan H M, Zhang L H, Hou C Y, Zhu G J, Tao D Y, Liang Z, Zhang Y K. Anal. Chem., 2009, 81: 8708-8714
[63] Qu Y Y, Xia S M, Yuan H M, Wu Q, Li M, Zou L J, Zhang L H, Liang Z, Zhang Y K. Anal. Chem., 2011, 83: 7457-7463
[64] Yan X Y, Gilman S D. Electrophoresis, 2010, 31: 346-354
[65] Berne C, Betancor L, Luckarift H R, Spain J C. Biomacromolecules, 2006, 7: 2631-2636
[66] Hodgson R J, Besanger T R, Brook M A, Brennan J D. Anal. Chem., 2005, 77: 7512-7519
[67] Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade T D. Chem. Rev., 2007, 107: 2300-2318
[68] Kundu S, Bhangale A S, Wallace W E, Flynn K M, Guttman C M, Gross R A, Beers K L. J. Am. Chem. Soc., 2011, 133: 6006-6011
[69] Pohar A, Plazl I, Plazl P Z. Lab Chip, 2009, 9: 3385-3390
[70] Du L H, Luo X P. RSC Advances, 2012, 2: 2663-2665
[71] Wang C, Li S J, Wu Z Q, Xu J J, Chen H Y, Xia X H. Lab Chip, 2010, 10: 639-646
[72] Jiang H H, Zou H F, Wang H L, Ni J Y, Zhang Q, Zhang Y K. J. Chromatogr. A, 2000, 1903: 77-84
[73] Xu S Y, Pan C S, Hu L G, Zhang Y, Guo Z, Li X. Electrophoresis, 2004, 25: 3669-3676
[74] Schoffelen S, van Hest J C M. Soft Matter, 2012, 8: 1736-1746
[75] Yang L, Shi J, Chen C J, Wang S M, Zhu L D, Xie W L, Guo L P. Electrophoresis, 2009, 30: 3527-3533

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
阅读次数
全文


摘要

固定化酶微反应器的制备及应用