English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1166-1180 DOI: 10.7536/PC210513 前一篇   后一篇

• 综述 •

石墨烯基人工智能柔性传感器

姜鸿基1,*(), 王美丽1, 卢志炜1, 叶尚辉1, 董晓臣2,*()   

  1. 1.省部共建有机电子与信息显示国家重点实验室 江苏省有机电子与信息显示协同创新中心 信息材料与纳米技术研究院 南京邮电大学 南京 210023
    2.江苏省柔性电子重点实验室 南京工业大学海外人才缓冲基地(先进材料研究院) 南京工业大学 南京 211816
  • 收稿日期:2021-05-10 修回日期:2021-07-28 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 姜鸿基, 董晓臣
  • 基金资助:
    国家科技部重大基础研究计划(2012CB933301); 国家自然科学基金面上项目(21574068); 江苏高校优势学科建设工程(YX03001)

Graphene-Based Artificial Intelligence Flexible Sensors

Hongji Jiang1(), Meili Wang1, Zhiwei Lu1, Shanghui Ye1, Xiaochen Dong2()   

  1. 1. State Key Laboratory of Organic Electronics and Information Displays, National Jiangsu Synergetic Innovation Center for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications,Nanjing 210023, China
    2. Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2021-05-10 Revised:2021-07-28 Online:2022-05-24 Published:2021-07-29
  • Contact: Hongji Jiang, Xiaochen Dong
  • Supported by:
    Major Basic Research Project of the Ministry of Science and Technology(2012CB933301); General Program of the National Natural Science Foundation of China(21574068); Construction Project of Superior Disciplines in Jiangsu Universities(YX03001)

皮肤是人体最大的器官,能够感知和应对复杂的环境刺激。以石墨烯作为核心部件制备的柔性传感器具有很强的刺激感知能力,可以模拟人体皮肤的柔韧性和拉伸性,是目前最具商业化潜力的可穿戴传感技术。本文首先介绍了传感器的压阻式、电容式、压电式、晶体管式等不同工作机制和评价其性能的如灵敏度、检测范围、响应速度等参数,总结了石墨烯的优点和制备方法。结合本课题组在石墨烯复合聚苯胺、银纳米粒子、碳纳米管和量子点等构建多功能石墨烯基柔性传感器的研究基础,从检测对象的种类出发,重点阐述了石墨烯基柔性传感器在检测压力、应变、温度、湿度、化学分子、生物分子和气体等单一目标物的性能以及石墨烯基多功能柔性传感器的应用。最后,对石墨烯基柔性传感器的未来发展方向做了展望。

Skin is the largest organ of the human body and can perceive and respond to complex environmental stimuli. As a 2D atomic layer of sp2-hybridized carbon arranged in a hexagonal network, graphene is regarded as a promising material for nanoelectronics owing to its high crystallinity and interesting semimetal electronic properties. In addition, graphene has extremely strong perception ability and high selectivity for different stimuli, and graphene-based materials have been widely used as key perceiving materials of artificial flexible sensors to imitate the flexibility and stretchability of human skin, which is one of the most promising wearable and sensing materials for potential commercialization. This paper first introduces the main working mechanisms of piezoresistive type, capacitive type, piezoelectric type and transistor type, as well as the key performance evaluation parameters such as sensitivity, detection range, response speed and so on of sensors. At the same time, the advantages and synthesis methods of graphene materials are also briefly summarized. In conjunction of our recent research works of graphene-based composite materials made up of graphene and polyaniline, Ag nanoparticles, carbon nanotubes, Ni(OH)2(Ⅱ) and quantum dots for flexible sensors, this paper then reviews the applications of graphene-based single function flexible sensors in detecting pressure, strain, temperature, humidity, chemical molecules, biomolecules, gas and other fields, as well as several graphene-based multifunctional flexible sensors. Finally, the future development of graphene-based flexible sensors is prospected.

Contents

1 Introduction

2 Flexible sensors

2.1 Flexible sensor features

2.2 The sensing mechanism of flexible sensors

2.3 Performance parameters of flexible sensors

3 Graphene

3.1 Synthesis of graphene-based materials

3.2 Sensing properties of graphene-based materials

4 Graphene-based single function flexible sensors

4.1 Graphene-based flexible pressure sensors

4.2 Graphene-based flexible strain sensors

4.3 Graphene-based flexible humidity sensors

4.4 Graphene-based flexible temperature sensors

4.5 Graphene-based other flexible sensors

5 Graphene-based multifunctional flexible sensors

5.1 Pressure/strain sensors

5.2 Pressure/humidity/temperature sensors

5.3 Strain/humidity/temperature sensors

5.4 Pressure/strain/humidity/temperature sensors

5.5 Graphene-based other multifunctional flexible sensors

6 Conclusion and prospect

()
图1 四种不同传感机制示意图:(a)压阻传感,(b)电容传感,(c)压电传感[9],(d)空气介质场效应晶体管传感[10]
Fig. 1 Schematic diagram of four different sensing mechanisms: (a) piezoresistive sensing, (b) capacitive sensing, (c) piezoelectric sensing[9], and (d) air-dielectric field effect transistor sensing[10]
图2 石墨烯的Hummer法制备过程[33]
Fig. 2 Preparation process of graphene through Hummer method[33]
图3 (a)传感器用于腕脉检测的示意图,(b)脉冲检测的输出波形,(c)用于呼吸检测,(d)运动前后呼吸反应曲线,(e~h)不同动作的响应曲线[50]
Fig. 3 (a) Applications for wrist pulse detection, (b) pulse waveform of the tester, (c) application for respiration detection, (d) response curves for breathing before and after exercise, (e~h) response curves of different actions[50]
图4 石墨烯片的压阻原理图[64]
Fig. 4 Schematic illustration of piezoresistivity of graphene sheets[64]
图5 (a)三维石墨烯/碳纳米管全碳协同纳米架构的应变传感器制备过程示意图,(b)弯曲应变传感器的照片,(c)三维石墨烯/碳纳米管骨架的扫描电镜图像,(d)不同应变条件下的GF,(e)三维石墨烯/碳纳米管中的裂纹示意图[79]
Fig. 5 (a) schematic diagram of manufacturing process of strain sensor based on 3D graphene/carbon nanotube full carbon synergistic nano-architecture, (b) photo of bending strain sensor, (c) scanning electron microscope image of 3D graphene/carbon nanotube skeleton, (d) gauge factors under different strains, (e) schematic illustration of the crack bridged in 3D graphene/carbon nanotube[79]
图6 (a)不同湿度环境下电阻式石墨烯湿度传感器电阻随相对湿度的变化,(b)水分子与石墨烯表面的相互作用[47]
Fig. 6 (a)The resistance of the resistive graphene humidity sensor changes with relative humidity in different humidity environments, (b) interaction of water molecules with surface of graphene[47]
图7 (a)湿度测试系统原理图和(b)氧化石墨烯薄膜表面的湿度传感原理图[85]
Fig. 7 (a) Schematic diagram of the humidity testing system, (b) schematic of humidity sensing at graphene oxide films[85]
图8 (a)石墨烯基热敏场效应晶体管的温度传感原理[97];石墨烯纳米壁/聚二甲基硅氧烷温度传感器的(b)制备过程和(c)热响应/恢复示意图[45]
Fig. 8 (a) Schematic diagram of temperature sensing of graphene-based thermal field effect transistors[97]. (b) Preparation process and (c) thermal response/recovery schematic of graphene nanowall/polydimethylsiloxane temperature sensors[45]
图9 (a)聚二乙炔/石墨烯复合薄膜的制备过程:(b)聚合前,(c)聚合后以及(d)暴露于挥发性有机化合物蒸气后,(e)聚二乙炔/石墨烯暴露于不同有机蒸气后的照片[108]
Fig. 9 (a) Schematic diagram of preparation process of polydiacetylene/graphene stacked composite film, self-assembling molecular structure of polydiacetylene on graphene: (b) before and (c) after polymerization, and (d) exposure to volatile organic compound vapors, (e) photographs of the polydiacetylene/graphene after exposure to different organic vapors[108]
图10 石墨烯场效应晶体管生物传感器用于细胞因子生物标志物检测的原理图[117]
Fig. 10 Schematic diagram of graphite field-effect transistor biosensor for cytokine biomarker detection[117]
图11 多孔石墨烯网络-聚二甲基硅氧烷复合材料在(a)静态压缩和(b)拉伸作用下的相对电阻变化,(c)在施加压力和(d)拉伸循环时电阻的相对变化[140]
Fig. 11 Relative resistance changes of the graphene porous network-polydimethylsiloxane composites under (a) static compression and (b) tensile, relative resistance changes under (c) pressure and (d) tensile cycle[140]
图12 (a)可拉伸多模态全石墨烯电子皮肤传感器矩阵的制备,(b)多模态电子皮肤传感器示意图,(c)传感器矩阵的电路图,(d)全传感器矩阵的透光率[142]
Fig. 12 (a) Fabrication of a stretchable multi-modal all-graphene electronic skin sensor matrix, (b) schematic diagram of multi-modal electronic skin sensor, (c) the circuit diagram of the sensor matrix, (d) the light transmittance of the sensor matrix[142]
图13 传感器在(a)压力和温度、(b)压力和应变、(c)应变和湿度等多个刺激同时作用下的电流响应,(d)传感器在不同刺激作用下的传感机制示意图[146]
Fig. 13 The current response of the sensors under multiple stimuli of (a) pressure and temperature, (b) pressure and strain, and (c) strain and humidity, (d) schematic of the sensing mechanism of the sensor under different stimuli[146]
[1]
Miao P, Wang J, Zhang C C, Sun M Y, Cheng S S, Liu H. Nano Micro Lett., 2019, 11(1): 1.
[2]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[3]
Geim A K. Science, 2009, 324(5934): 1530.

doi: 10.1126/science.1158877     pmid: 19541989
[4]
Huang H J, Zhang J, Jiang L, Zang Z G. J. Alloys Compd., 2017, 718: 112.

doi: 10.1016/j.jallcom.2017.05.132     URL    
[5]
Huo Q S, Jin J Q, Wang X Q, Lu S W, Zhang Y W, Ma J C, Wang S. Mater. Res. Express, 2019, 6(7): 075613.

doi: 10.1088/2053-1591/ab17ac     URL    
[6]
Le K, Wang Z, Wang F L, Wang Q, Shao Q, Murugadoss V, Wu S D, Liu W, Liu J R, Gao Q, Guo Z H. Dalton Trans., 2019, 48(16): 5193.

doi: 10.1039/C9DT00615J     URL    
[7]
Huang X S, Yin R, Qian L, Zhao W, Liu H, Liu C T, Fan J C, Hou H, Zhang J X, Guo Z H. Ceram. Int., 2019, 45(14): 17784.

doi: 10.1016/j.ceramint.2019.05.349     URL    
[8]
Zheng Q B, Lee J H, Shen X, Chen X D, Kim J K. Mater. Today, 2020, 36: 158.

doi: 10.1016/j.mattod.2019.12.004     URL    
[9]
Zang Y P, Zhang F J, Di C A, Zhu D B. Mater. Horiz., 2015, 2(2): 140.

doi: 10.1039/C4MH00147H     URL    
[10]
Shin S H, Ji S, Choi S, Pyo K H, An B W, Park J, Kim J, Kim J Y, Lee K S, Kwon S Y, Heo J, Park B G, Park J U. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[11]
Cai Y C, Huang W, Dong X C. Chin Sci Bull, 2017, 62(7): 635.

doi: 10.1360/N972015-01445     URL    
(蔡依晨, 黄维, 董晓臣. 科学通报, 2017, 62(7): 635.
[12]
Xu M X. Doctoral Dissertation of University of Science and Technology Beijing, 2018.
(徐旻轩. 北京科技大学博士论文, 2018.).
[13]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z N. Adv. Mater., 2013, 25(42): 5997.

doi: 10.1002/adma.201302240     URL    
[14]
Wang Z L. Adv. Mater., 2012, 24(34): 4632.

doi: 10.1002/adma.201104365     URL    
[15]
Zhao S, Zhu R. Acta Chim. Sinica, 2019, 77(12): 1250.

doi: 10.6023/A19060227     URL    
[16]
Li L Q, Gao P, Baumgarten M, Müllen K, Lu N, Fuchs H, Chi L F. Adv. Mater., 2013, 25(25): 3419.

doi: 10.1002/adma.201301138     URL    
[17]
Ren X C, Pei K, Peng B Y, Zhang Z C, Wang Z R, Wang X Y, Chan P K L. Adv. Mater., 2016, 28(24): 4832.

doi: 10.1002/adma.201600040     URL    
[18]
Kang B S, Kim J, Jang S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J. Appl. Phys. Lett., 2005, 86(25): 253502.

doi: 10.1063/1.1952568     URL    
[19]
Sun Q J, Kim D H, Park S S, Lee N Y, Zhang Y, Lee J H, Cho K, Cho J H. Adv. Mater., 2014, 26(27): 4735.

doi: 10.1002/adma.201400918     URL    
[20]
Lin P, Yan F. Adv. Mater., 2012, 24(1): 34.

doi: 10.1002/adma.201103334     URL    
[21]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81(1): 109.

doi: 10.1103/RevModPhys.81.109     URL    
[22]
He Q Y, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P, Zhang H. ACS Nano, 2010, 4(6): 3201.

doi: 10.1021/nn100780v     URL    
[23]
Yu C M. Doctoral Dissertation of Shaanxi Normal University, 2015.
(鱼春萌. 陕西师范大学博士论文, 2015.).
[24]
Zheng Q B, Li Z G, Yang J H, Kim J K. Prog. Mater. Sci., 2014, 64: 200.

doi: 10.1016/j.pmatsci.2014.03.004     URL    
[25]
Zhao G K, Li X M, Huang M R, Zhen Z, Zhong Y J, Chen Q, Zhao X L, He Y J, Hu R R, Yang T T, Zhang R J, Li C L, Kong J, Xu J B, Ruoff R S, Zhu H W. Chem. Soc. Rev., 2017, 46(15): 4417.

doi: 10.1039/C7CS00256D     URL    
[26]
Zheng Y Q, Wang H, Hou S F, Xia D Y. Adv. Mater. Technol., 2017, 2(5): 1600237.

doi: 10.1002/admt.201600237     URL    
[27]
Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4(4): 217.

doi: 10.1038/nnano.2009.58     URL    
[28]
Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’Homme R K, Car R, Saville D A, Aksay I A. J. Phys. Chem. B, 2006, 110(17): 8535.

doi: 10.1021/jp060936f     URL    
[29]
Tour J M. Chem. Mater., 2014, 26(1): 163.

doi: 10.1021/cm402179h     URL    
[30]
Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23(9): 1089.

doi: 10.1002/adma.201003753     URL    
[31]
Jiang H J, Mao B X. Chin. J. Inorg. Chem., 2013, 29(11): 2305.
(姜鸿基, 毛炳雪. 无机化学学报, 2013, 29(11): 2305.)
[32]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558.

doi: 10.1016/j.carbon.2007.02.034     URL    
[33]
Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23(9): 1089.

doi: 10.1002/adma.201003753     URL    
[34]
Singh E, Meyyappan M, Nalwa H S. ACS Appl. Mater. Interfaces, 2017, 9(40): 34544.

doi: 10.1021/acsami.7b07063     URL    
[35]
Fu W Y, Jiang L, van Geest E P, Lima L M C, Schneider G F. Adv. Mater., 2017, 29(6): 1603610.

doi: 10.1002/adma.201603610     URL    
[36]
Suvarnaphaet P, Pechprasarn S. Sensors, 2017, 17(10): 2161.

doi: 10.3390/s17102161     URL    
[37]
Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R, Hashemi N N. J. Mater. Chem. A, 2017, 5(34): 17777.

doi: 10.1039/C7TA05759H     URL    
[38]
Yang H G, Xue T Y, Li F Y, Liu W T, Song Y L. Adv. Mater. Technol., 2018: 1800574.
[39]
Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein H Y Y, Takei K, Javey A. Adv. Mater., 2016, 28(22): 4397.

doi: 10.1002/adma.201504958     URL    
[40]
Torrisi F, Carey T. Nano Today, 2018, 23: 73.

doi: 10.1016/j.nantod.2018.10.009     URL    
[41]
Yao B, Zhang J, Kou T Y, Song Y, Liu T, Li Y. Adv. Sci., 2017, 4(7): 1700107.

doi: 10.1002/advs.201700107     URL    
[42]
Lv L, Zhang P P, Xu T, Qu L T. ACS Appl. Mater. Interfaces, 2017, 9(27): 22885.

doi: 10.1021/acsami.7b07153     URL    
[43]
Wang Y, Wang L, Yang T T, Li X, Zang X B, Zhu M, Wang K L, Wu D H, Zhu H W. Adv. Funct. Mater., 2014, 24(29): 4666.

doi: 10.1002/adfm.201400379     URL    
[44]
Yang T T, Jiang X, Zhong Y J, Zhao X L, Lin S Y, Li J, Li X M, Xu J L, Li Z H, Zhu H W. ACS Sens., 2017, 2(7): 967.

doi: 10.1021/acssensors.7b00230     URL    
[45]
Yang J, Wei D P, Tang L L, Song X F, Luo W, Chu J, Gao T P, Shi H F, Du C L. RSC Adv., 2015, 5(32): 25609.

doi: 10.1039/C5RA00871A     URL    
[46]
Hong S Y, Lee Y H, Park H, Jin S W, Jeong Y R, Yun J, You I, Zi G, Ha J S. Adv. Mater., 2016, 28(5): 930.

doi: 10.1002/adma.201504659     URL    
[47]
Smith A D, Elgammal K, Niklaus F, Delin A N, Fischer A C, Vaziri S, Forsberg F, Råsander M, Hugosson H, Bergqvist L, Schröder S, Kataria S, Östling M, Lemme M C. Nanoscale, 2015, 7(45): 19099.

doi: 10.1039/C5NR06038A     URL    
[48]
Popov V I, Nikolaev D V, Timofeev V B, Smagulova S A, Antonova I V. Nanotechnology, 2017, 28(35): 355501.

doi: 10.1088/1361-6528/aa7b6e     URL    
[49]
Yavari F, Koratkar N. J. Phys. Chem. Lett., 2012, 3(13): 1746.

doi: 10.1021/jz300358t     pmid: 26291854
[50]
Tao L Q, Zhang K N, Tian H, Liu Y, Wang D Y, Chen Y Q, Yang Y, Ren T L. ACS Nano, 2017, 11(9): 8790.

doi: 10.1021/acsnano.7b02826     URL    
[51]
Samad Y A, Li Y Q, Schiffer A, Alhassan S M, Liao K. Small, 2015, 11(20): 2380.

doi: 10.1002/smll.201403532     URL    
[52]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.

doi: 10.1002/adma.201303041     URL    
[53]
Huang J K, Zeng J B, Liang B Q, Wu J W, Li T G, Li Q, Feng F, Feng Q W, Rood M J, Yan Z F. ACS Appl. Mater. Interfaces, 2020, 12(14): 16822.

doi: 10.1021/acsami.0c01794     URL    
[54]
Ge G, Cai Y C, Dong Q C, Zhang Y Z, Shao J J, Huang W, Dong X C. Nanoscale, 2018, 10(21): 10033.

doi: 10.1039/C8NR02813C     URL    
[55]
Zhang X C, Scarpa F, McHale R, Limmack A P, Peng H X. RSC Adv., 2016, 6(83): 80334.

doi: 10.1039/C6RA15868D     URL    
[56]
Chen Z F, Wang Z, Li X M, Lin Y X, Luo N Q, Long M Z, Zhao N, Xu J B. ACS Nano, 2017, 11(5): 4507.

doi: 10.1021/acsnano.6b08027     URL    
[57]
Pyo S, Choi J, Kim J. Adv. Electron. Mater., 2018, 4(1): 1700427.

doi: 10.1002/aelm.201700427     URL    
[58]
Kang M, Kim J, Jang B, Chae Y, Kim J H, Ahn J H. ACS Nano, 2017, 11(8): 7950.

doi: 10.1021/acsnano.7b02474     URL    
[59]
Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P. ACS Appl. Mater. Interfaces, 2019, 11(16): 14997.

doi: 10.1021/acsami.9b02049     URL    
[60]
Shi G, Zhao Z H, Pai J H, Lee I, Zhang L Q, Stevenson C, Ishara K, Zhang R J, Zhu H W, Ma J. Adv. Funct. Mater., 2016, 26(42): 7614.

doi: 10.1002/adfm.201602619     URL    
[61]
Wang X N, Qiu Y F, Cao W W, Hu P G. Chem. Mater., 2015, 27(20): 6969.

doi: 10.1021/acs.chemmater.5b02098     URL    
[62]
Li X T, Hua T, Xu B G. Carbon, 2017, 118: 686.

doi: 10.1016/j.carbon.2017.04.002     URL    
[63]
Zhao J, Zhang G Y, Shi D X. Chin. Phys. B, 2013, 22(5): 057701.

doi: 10.1088/1674-1056/22/5/057701     URL    
[64]
Kim Y J, Cha J Y, Ham H, Huh H, So D S, Kang I. Curr. Appl. Phys., 2011, 11(1): S350.

doi: 10.1016/j.cap.2010.11.022     URL    
[65]
Liang K, Spiesz E M, Schmieden D T, Xu A W, Meyer A S, Aubin-Tam M E. ACS Nano, 2020, 14(11): 14731.

doi: 10.1021/acsnano.0c00913     URL    
[66]
Qin Y Y, Peng Q Y, Ding Y J, Lin Z S, Wang C H, Li Y, Xu F, Li J J, Yuan Y, He X D, Li Y B. ACS Nano, 2015, 9(9): 8933.

doi: 10.1021/acsnano.5b02781     URL    
[67]
Kim S J, Mondal S, Min B K, Choi C G. ACS Appl. Mater. Interfaces, 2018, 10(42): 36377.

doi: 10.1021/acsami.8b11233     URL    
[68]
Jing X, Mi H Y, Peng X F, Turng L S. Carbon, 2018, 136: 63.

doi: 10.1016/j.carbon.2018.04.065     URL    
[69]
Tang Y C, Zhao Z B, Hu H, Liu Y, Wang X Z, Zhou S K, Qiu J S. ACS Appl. Mater. Interfaces, 2015, 7(49): 27432.

doi: 10.1021/acsami.5b09314     URL    
[70]
Pang K, Song X, Xu Z, Liu X T, Liu Y J, Zhong L, Peng Y X, Wang J X, Zhou J Z, Meng F X, Wang J, Gao C. Sci. Adv., 2020, 6(46): eabd4045.

doi: 10.1126/sciadv.abd4045     URL    
[71]
Sun S B, Liu Y Q, Chang X T, Jiang Y C, Wang D S, Tang C J, He S Y, Wang M W, Guo L, Gao Y. J. Mater. Chem. C, 2020, 8(6): 2074.

doi: 10.1039/C9TC04537F     URL    
[72]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6): 424.

doi: 10.1038/nmat3001     URL    
[73]
Li J H, Zhao S F, Zeng X L, Huang W P, Gong Z Y, Zhang G P, Sun R, Wong C P. ACS Appl. Mater. Interfaces, 2016, 8(29): 18954.

doi: 10.1021/acsami.6b05088     URL    
[74]
Sarker F, Karim N, Afroj S, Koncherry V, Novoselov K S, Potluri P. ACS Appl. Mater. Interfaces, 2018, 10(40): 34502.

doi: 10.1021/acsami.8b13018     URL    
[75]
Li W G, Guo J H, Fan D L. Adv. Mater. Technol., 2017, 2(6): 1700070.

doi: 10.1002/admt.201700070     URL    
[76]
Zhou R, Li P C, Fan Z, Du D H, Ouyang J Y. J. Mater. Chem. C, 2017, 5(6): 1544.

doi: 10.1039/C6TC04849H     URL    
[77]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706.

doi: 10.1038/nature07719     URL    
[78]
Yan C Y, Wang J X, Kang W B, Cui M Q, Wang X, Foo C Y, Chee K J, Lee P S. Adv. Mater., 2014, 26(13): 2022.

doi: 10.1002/adma.201304742     URL    
[79]
Cai Y C, Shen J, Dai Z Y, Zang X X, Dong Q C, Guan G F, Li L J, Huang W, Dong X C. Adv. Mater., 2017, 29(31): 1606411.

doi: 10.1002/adma.201606411     URL    
[80]
Wang S, Fang Y L, He H, Zhang L, Li C A, Ouyang J Y. Adv. Funct. Mater., 2021, 31(5): 2007495.

doi: 10.1002/adfm.202007495     URL    
[81]
Lv C, Hu C, Luo J H, Liu S, Qiao Y, Zhang Z, Song J F, Shi Y, Cai J G, Watanabe A. Nanomaterials, 2019, 9(3): 422.

doi: 10.3390/nano9030422     URL    
[82]
Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N. Small, 2010, 6(22): 2535.

doi: 10.1002/smll.201001384     pmid: 20963796
[83]
Li X Y, Chen X D, Yao Y, Li N, Chen X P, Bi X. IEEE Sens. J., 2013, 13(12): 4749.

doi: 10.1109/JSEN.2013.2273615     URL    
[84]
Sun J W, Xie X, Bi H C, Jia H Y, Zhu C Y, Wan N, Huang J Q, Nie M, Li D, Sun L T. Nanotechnology, 2017, 28(13): 134004.

doi: 10.1088/1361-6528/aa5e68     URL    
[85]
Bi H C, Yin K B, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M S. Sci. Rep., 2013, 3(1): 1.
[86]
Shojaee M, Nasresfahani S, Dordane M K, Sheikhi M H. Sens. Actuat. A: Phys., 2018, 279: 448.

doi: 10.1016/j.sna.2018.06.052     URL    
[87]
Trung T Q, Ramasundaram S, Hwang B U, Lee N E. Adv. Mater., 2016, 28(3): 394.

doi: 10.1002/adma.201670016     URL    
[88]
Choi S J, Yu H, Jang J S, Kim M H, Kim S J, Jeong H S, Kim I D. Small, 2018, 14(13): 1703934.

doi: 10.1002/smll.201703934     URL    
[89]
Ding X, Chen X D, Chen X P, Zhao X, Li N. Sens. Actuat. B: Chem., 2018, 266: 534.

doi: 10.1016/j.snb.2018.03.143     URL    
[90]
Yao Y, Xue Y J. Sens. Actuat. B: Chem., 2015, 211: 52.

doi: 10.1016/j.snb.2014.12.134     URL    
[91]
Tai H L, Zhen Y, Liu C H, Ye Z B, Xie G Z, Du X S, Jiang Y D. Sens. Actuat. B: Chem., 2016, 230: 501.

doi: 10.1016/j.snb.2016.01.105     URL    
[92]
Yuan Z, Tai H L, Ye Z B, Liu C H, Xie G Z, Du X S, Jiang Y D. Sens. Actuat. B: Chem., 2016, 234: 145.

doi: 10.1016/j.snb.2016.04.070     URL    
[93]
Wang S, Xie G Z, Su Y J, Su L, Zhang Q P, Du H F, Tai H L, Jiang Y D. Sens. Actuat. B: Chem., 2018, 255: 2203.

doi: 10.1016/j.snb.2017.09.028     URL    
[94]
Zhang D Z, Wang D Y, Li P, Zhou X Y, Zong X Q, Dong G K. Sens. Actuat. B: Chem., 2018, 255: 1869.

doi: 10.1016/j.snb.2017.08.212     URL    
[95]
Zhang D Z, Wang D Y, Zong X Q, Dong G K, Zhang Y. Sens. Actuat. B: Chem., 2018, 262: 531.

doi: 10.1016/j.snb.2018.02.012     URL    
[96]
Yuan Z, Tai H L, Bao X H, Liu C H, Ye Z B, Jiang Y D. Mater. Lett., 2016, 174: 28.

doi: 10.1016/j.matlet.2016.01.122     URL    
[97]
Trung T Q, Ramasundaram S, Hong S W, Lee N E. Adv. Funct. Mater., 2014, 24(22): 3438.

doi: 10.1002/adfm.201304224     URL    
[98]
Jiang H J. Small, 2011, 7(17): 2413.
[99]
Wu S X, He Q Y, Tan C L, Wang Y D, Zhang H. Small, 2013, 9(8): 1160.

doi: 10.1002/smll.201202896     URL    
[100]
Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18(21): 3506.

doi: 10.1002/adfm.200800951     URL    
[101]
Li J, Guo S J, Zhai Y M, Wang E K. Anal. Chimica Acta, 2009, 649(2): 196.

doi: 10.1016/j.aca.2009.07.030     URL    
[102]
Li J, Guo S, Zhai Y M, Wang E K. Electrochem. Commun., 2009, 11(5): 1085.

doi: 10.1016/j.elecom.2009.03.025     URL    
[103]
Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504.

doi: 10.1016/j.bios.2009.11.009     URL    
[104]
Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. J. Mater. Chem., 2012, 22(33): 17044.

doi: 10.1039/c2jm33286h     URL    
[105]
Xu H F, Dai H, Chen G N. Talanta, 2010, 81(1/2): 334.

doi: 10.1016/j.talanta.2009.12.006     URL    
[106]
Zhan B B, Liu C B, Shi H X, Li C, Wang L H, Huang W, Dong X C. Appl. Phys. Lett., 2014, 104(24): 243704.

doi: 10.1063/1.4884418     URL    
[107]
de Ohno Y, Maehashi K, Matsumoto K. Biosens. Bioelectron., 2010, 26(4): 1727.

doi: 10.1016/j.bios.2010.08.001     URL    
[108]
Wang X N, Sun X L, Hu P G, Zhang J, Wang L F, Feng W, Lei S B, Yang B, Cao W W. Adv. Funct. Mater., 2013, 23(48): 6044.

doi: 10.1002/adfm.201301044     URL    
[109]
Zou J F, Liu Z G, Guo Y J, Dong C. Anal. Methods, 2017, 9(1): 134.

doi: 10.1039/C6AY02719A     URL    
[110]
Ohno Y, Maehashi K, Matsumoto K. J. Am. Chem. Soc., 2010, 132(51): 18012.

doi: 10.1021/ja108127r     URL    
[111]
Song Y, Luo Y N, Zhu C Z, Li H, Du D, Lin Y H. Biosens. Bioelectron., 2016, 76: 195.

doi: 10.1016/j.bios.2015.07.002     URL    
[112]
Shao Y Y, Wang J, Wu H, Liu J, Aksay I, Lin Y H. Electroanalysis, 2010, 22(10): 1027.

doi: 10.1002/elan.200900571     URL    
[113]
Jang H D, Kim S K, Chang H, Roh K M, Choi J W, Huang J X. Biosens. Bioelectron., 2012, 38(1): 184.

doi: 10.1016/j.bios.2012.05.033     URL    
[114]
Zhan B B, Liu C B, Chen H P, Shi H X, Wang L H, Chen P, Huang W, Dong X C. Nanoscale, 2014, 6(13): 7424.

doi: 10.1039/C4NR01611D     URL    
[115]
Fu C L, Yang W S, Chen X, Evans D G. Electrochem. Commun., 2009, 11(5): 997.

doi: 10.1016/j.elecom.2009.02.042     URL    
[116]
Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12(31): 8943.

doi: 10.1039/c0cp00213e     URL    
[117]
Wang Z R, Hao Z, Wang X J, Huang C, Lin Q, Zhao X Z, Pan Y L. Adv. Funct. Mater., 2021, 31(4): 2170026.

doi: 10.1002/adfm.202170026     URL    
[118]
Dong X C, Shi Y M, Huang W, Chen P, Li L J. Adv. Mater., 2010, 22(14): 1649.

doi: 10.1002/adma.200903645     URL    
[119]
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Nat. Mater., 2007, 6(9): 652.

pmid: 17660825
[120]
Yuan W J, Shi G Q. J. Mater. Chem. A, 2013, 1(35): 10078.

doi: 10.1039/c3ta11774j     URL    
[121]
Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8): 1178.

doi: 10.1016/j.pmatsci.2011.03.003     URL    
[122]
Huang D, Yang Z, Li X L, Zhang L L, Hu J, Su Y J, Hu N T, Yin G L, He D N, Zhang Y F. Nanoscale, 2017, 9(1): 109.

doi: 10.1039/c6nr06465e     pmid: 27763653
[123]
Huang B, Li Z Y, Liu Z R, Zhou G, Hao S G, Wu J, Gu B L, Duan W H. J. Phys. Chem. C, 2008, 112(35): 13442.

doi: 10.1021/jp8021024     URL    
[124]
Leenaerts O, Partoens B, Peeters F M. Phys. Rev. B, 2008, 77(12): 125416.

doi: 10.1103/PhysRevB.77.125416     URL    
[125]
Robinson J T, Perkins F K, Snow E S, Wei Z Q, Sheehan P E. Nano Lett., 2008, 8(10): 3137.

doi: 10.1021/nl8013007     pmid: 18763832
[126]
Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. ACS Nano, 2009, 3(2): 301.

doi: 10.1021/nn800593m     pmid: 19236064
[127]
Yuan W J, Liu A R, Huang L, Li C, Shi G Q. Adv. Mater., 2013, 25(5): 766.

doi: 10.1002/adma.201203172     URL    
[128]
Huang L, Wang Z P, Zhang J K, Pu J L, Lin Y J, Xu S H, Shen L, Chen Q, Shi W Z. ACS Appl. Mater. Interfaces, 2014, 6(10): 7426.

doi: 10.1021/am500843p     URL    
[129]
Al Mashat L, Shin K, Kalantar zadeh K, Plessis J D, Han S H, Kojima R W. J. Phys. Chem. C, 2010, 114(39): 16168.

doi: 10.1021/jp103134u     URL    
[130]
Bai H, Sheng K X, Zhang P F, Li C, Shi G Q. J. Mater. Chem., 2011, 21(46): 18653.

doi: 10.1039/c1jm13918e     URL    
[131]
Bai S L, Guo J, Sun J H, Tang P G, Chen A F, Luo R X, Li D Q. Ind. Eng. Chem. Res., 2016, 55(19): 5788.

doi: 10.1021/acs.iecr.6b00418     URL    
[132]
Sundaram R S, GÓmez-Navarro C, Balasubramanian K, Burghard M, Kern K. Adv. Mater., 2008, 20(16): 3050.

doi: 10.1002/adma.200800198     URL    
[133]
Chu B H, Lo C F, Nicolosi J, Chang C Y, Chen V, Strupinski W, Pearton S J, Ren F. Sens. Actuat. B: Chem., 2011, 157(2): 500.

doi: 10.1016/j.snb.2011.05.007     URL    
[134]
Yi J, Lee J M, Park W I. Sens. Actuat. B: Chem., 2011, 155(1): 264.

doi: 10.1016/j.snb.2010.12.033     URL    
[135]
Song Z L, Wei Z R, Wang B C, Luo Z, Xu S M, Zhang W K, Yu H X, Li M, Huang Z, Zang J F, Yi F, Liu H. Chem. Mater., 2016, 28(4): 1205.

doi: 10.1021/acs.chemmater.5b04850     URL    
[136]
Choi S J, Choi C, Kim S J, Cho H J, Hakim M, Jeon S, Kim I D. Sci. Rep., 2015, 5(1): 1.
[137]
Pang Y, Yang Z, Han X L, Jian J M, Li Y X, Wang X F, Qiao Y C, Yang Y, Ren T L. ACS Appl. Mater. Interfaces, 2018, 10(50): 44173.

doi: 10.1021/acsami.8b16237     URL    
[138]
Wang Z F, Huang Y, Sun J F, Huang Y, Hu H, Jiang R J, Gai W M, Li G M, Zhi C Y. ACS Appl. Mater. Interfaces, 2016, 8(37): 24837.

doi: 10.1021/acsami.6b08207     URL    
[139]
Robert C, Feller J F, Castro M. ACS Appl. Mater. Interfaces, 2012, 4(7): 3508.

doi: 10.1021/am300594t     URL    
[140]
Pang Y, Tian H, Tao L Q, Li Y X, Wang X F, Deng N Q, Yang Y, Ren T L. ACS Appl. Mater. Interfaces, 2016, 8(40): 26458.

doi: 10.1021/acsami.6b08172     URL    
[141]
Wang Y, Wu H T, Xu L, Zhang H N, Yang Y, Wang Z L. Sci. Adv., 2020, 6(34): abb9083.
[142]
Ho D H, Sun Q J, Kim S Y, Han J T, Kim D H, Cho J H. Adv. Mater., 2016, 28(13): 2601.

doi: 10.1002/adma.201505739     URL    
[143]
Zhao X L, Long Y, Yang T T, Li J, Zhu H W. ACS Appl. Mater. Interfaces, 2017, 9(35): 30171.

doi: 10.1021/acsami.7b09184     URL    
[144]
Wang Q, Ling S J, Liang X P, Wang H M, Lu H J, Zhang Y Y. Adv. Funct. Mater., 2019, 29(16): 1808695.

doi: 10.1002/adfm.201808695     URL    
[145]
Chen Y A, Pötschke P, Pionteck J, Voit B, Qi H S. J. Mater. Chem. A, 2018, 6(17): 7777.

doi: 10.1039/C8TA00618K     URL    
[146]
Liu H B, Xiang H C, Wang Y, Li Z J, Qian L W, Li P, Ma Y C, Zhou H W, Huang W. ACS Appl. Mater. Interfaces, 2019, 11(43): 40613.

doi: 10.1021/acsami.9b13349     URL    
[147]
Zhao F, Zhao Y, Cheng H H, Qu L T. Angew. Chem. Int. Ed., 2015, 54(49): 14951.

doi: 10.1002/anie.201508300     pmid: 26457880
[148]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14): 1876.

doi: 10.1002/smll.201002009     pmid: 21630440
[149]
Zhu W J, Tai G A, Wang X F, Gu Q L, Wu Z X, Zhu K J. Prog. Chem., 2017, 29(11): 1285.
(朱文杰, 台国安, 王旭峰, 古其林, 伍增辉, 朱孔军. 化学进展, 2017, 29(11): 1285.)

doi: 10.7536/PC170567    
[150]
Wu N, Cheng X F, Zhong Q Z, Zhong J W, Li W B, Wang B, Hu B, Zhou J. Adv. Funct. Mater., 2015, 25(30): 4788.

doi: 10.1002/adfm.201501695     URL    
[151]
Khalifa M, Wuzella G, Lammer H, Mahendran A R. Synth. Met., 2020, 266: 116420.

doi: 10.1016/j.synthmet.2020.116420     URL    
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[6] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[7] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[8] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[9] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[10] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[11] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[12] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[13] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[14] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[15] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
阅读次数
全文


摘要

石墨烯基人工智能柔性传感器