English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1362-1377 DOI: 10.7536/PC200747 前一篇   后一篇

• 综述 •

CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用

洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍*(), 陈润锋*()   

  1. 南京邮电大学有机电子与信息显示国家重点实验室培育基地 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 先进生物与化学制造协同创新中心南京 210023
  • 收稿日期:2020-07-20 修回日期:2020-09-18 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 吕文珍, 陈润锋
  • 基金资助:
    国家自然科学基金项目(21304049); 国家自然科学基金项目(21674049); 国家自然科学基金项目(21001065); 国家自然科学基金项目(21274065); 国家自然科学基金项目(21601091); 江苏省自然科学基金项目(BK20160891); 人才科研启动基金项目(NY216028); 及南京邮电大学1311人才项目资助

The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals

Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv(), Runfeng Chen()   

  1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2020-07-20 Revised:2020-09-18 Online:2021-08-20 Published:2020-12-28
  • Contact: Wenzhen Lv, Runfeng Chen
  • Supported by:
    National Natural Science Foundation of China(21304049); National Natural Science Foundation of China(21674049); National Natural Science Foundation of China(21001065); National Natural Science Foundation of China(21274065); National Natural Science Foundation of China(21601091); Natural Science Foundation of Jiangsu Province of China(BK20160891); Startup Foundation for Talents(NY216028); 1311 Talents Program of Nanjing University of Posts and Telecommunications

全无机钙钛矿CsPbX3(X = Cl, Br, I) 纳米晶作为一类新型的低成本直接带隙半导体材料,具有优异的光学性质,如吸收系数高、尺寸和发射波长易调节、半峰宽窄、荧光量子产率高等特性,在照明、能源、信息显示和探测等领域表现出巨大的应用潜力,成为材料领域的研究热点。本文从CsPbX3纳米晶的结构组成入手,重点综述了其常见的制备方法如高温热注入法、室温再沉淀法、溶剂热法、液滴微流控法、阴离子交换法等,对常见的形貌尺寸控制策略如反应温度和表面配体进行归纳,以及改善CsPbX3纳米晶稳定性的策略,总结了此类材料在白色发光二极管、电致发光二极管、激光器、光电探测器、太阳能电池等光电领域的应用情况,最后对CsPbX3纳米晶领域存在的问题和面临的挑战进行了分析和评述。

All-inorganic cesium lead halide perovskite CsPbX3(X = Cl, Br, I) nanocrystals, as a new generation of low cost and direct band gap semiconductor materials, have attracted extensive attention of researchers owing to their outstanding photoluminescence(PL) performance, solution processability, and defect tolerance. Especially, this new emerged materials show arresting optoelectronic properties, such as high absorption coefficient, size- and composition-dependent tunable band gaps from the violet to near-infrared, extremely narrow full width at half-maximum, and high photoluminescence quantum yields(PLQY). Many potential optoelectronic applications have been demonstrated as illumination, energy, information storage and detection. In this review, we mainly focus on the related crystal structure characteristics of CsPbX3 nanocrystals, the various colloidal synthesis of monodisperse CsPbX3 nanocrystals including the high temperature hot-injection method, room-temperature recrystallization method, solvothermal method, droplet-based microfluidic method, postsynthetic halide anion exchange reaction, and so on. We also summarize the common strategies for efficiently controlling different morphology and size via controlling the temperature and the capping ligands. The related methods to enhance the stability are also summarized. In addition, we carefully conclude the optoelectronic device of CsPbX3 nanocrystals in white light-emitting diodes(WLEDs), electroluminescent light emitting diodes(LEDs), lasers especially in low-threshold amplified spontaneous emission, photodetectors, high-efficiency solar cells, and other optoelectronics fields. Finally, the existing problems and prospects are also provided in detail.

Contents

1 Introduction

2 Crystal structures of CsPbX3

3 Synthesis methods of CsPbX3 nanocrystals

3.1 High temperature hot-injection method

3.2 Room-temperature reprecipitation method

3.3 Droplet-based microfluidic method

3.4 Solvothermal method

3.5 Anion exchange reaction

3.6 Microwave assisted approach

3.7 Ultrasonic synthesis

4 The morphology and size control of CsPbX3 nanocrystals

4.1 Reaction temperature

4.2 Capping ligands

5 Strategies for enhancing the stability of CsPbX3 nanocrystals

6 Optoelectronic applications of CsPbX3 nanocrystals

6.1 White light emitting diodes(WLEDs)

6.2 Electroluminescent light emitting diodes(LEDs)

6.3 Lasers

6.4 Photodetectors

6.5 Solar cells

7 Conclusion and outlook

()
图1 CsPbBr3纳米晶的结构相变[13]
Fig. 1 Structural phase transition of CsPbBr3 nanocrystals[13]
图2 (a)热注入法示意图;(b)室温再沉淀法示意图[4,24]
Fig. 2 Diagram of(a) High temperature hot-injection method;(b) Room-temperature recrystallization method[4,24]
图3 (a)液滴微流控法示意图;(b)溶剂热法示意图;(c)阴离子交换法示意图[14,34,35]
Fig. 3 Diagram of(a) Droplet-based microfluidic method;(b) Solvothermal method;(c) Anion exchange method[14,34,35]
图4 表面配体和温度对CsPbX3纳米晶形貌尺寸的影响[50]
Fig. 4 The effect of surface ligands and temperature on the morphology of CsPbX3 nanocrystals[50]
图5 (a)CsPbBr3纳米晶和CsPbBr3/PDMS薄膜的荧光发射光谱;(b)WLED器件结构示意图;(c)WLED的荧光发射光谱;(d)WLED在CIE 1931图表中的色坐标[67]
Fig. 5 (a) Photoluminescence spectra of CsPbBr3 nanocrystals and CsPbBr3/PDMS film;(b) Schematic of WLED device structure;(c) Photoluminescence spectra of WLED device;(d) Color coordinates of WLED in CIE 1931 chart[67]
图6 (a)LED器件结构示意图;(b)LED器件的电致发光光谱;(c)电流密度随电压变化曲线图;(d)外量子效率随电流密度变化曲线图[75]
Fig. 6 (a) Schematic of LED device structure;(b) Electroluminescence spectrum of LED device;(c) Curve of current density with voltage;(d) Curve of the EQE with current density[75]
图7 CsPbBr3纳米线激光器的(a)发射波长随泵浦能量变化曲线;(b)发光强度和半峰宽随泵浦能量关系;(c)时间分辨光谱;(d)器件光稳定性测试[11]
Fig. 7 Related measurement for CsPbBr3 nanowires laser. (a) The emission wavelength with pump fluence;(b) The photoluminescence intensity vs FWHM with pump fluence;(c) The time-resolved spectroscopy;(d) The light stability test[11]
图8 (a)基于CsPbBr3纳米线的光电探测器结构示意图;(b)CsPbBr3 纳米线光电探测器在不同强度光照射下的光电流-时间曲线[82]
Fig. 8 (a) Schematic of CsPbBr3 nanowires photodetector structure;(b) Time-dependent photocurrent measurement for CsPbBr3 nanowires photodetector under different laser intensity(λ = 400 nm)[82]
图9 (a)钙钛矿太阳能电池的结构示意图;(b)电流密度-电压曲线及器件性能参数;(c)EQE和电流密度随入射波长的变化曲线[89]
Fig. 9 (a) Schematic of perovskite solar cell structure;(b) Curve of current density with voltage and related parameters;(c) Curve of EQE and current density vs wavelength[89]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[2]
Liu Z H, Qiu L B, Juarez-Perez E J, Hawash Z, Kim T, Jiang Y, Wu Z F, Raga S R, Ono L K, Liu S Z, Qi Y B. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[3]
Sutherland B R, Sargent E H. Nat. Photonics, 2016, 10(5): 295.

doi: 10.1038/nphoton.2016.62     URL    
[4]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.

doi: 10.1021/nl5048779     pmid: 25633588
[5]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6(13): 2452.

doi: 10.1021/acs.jpclett.5b00968     URL    
[6]
Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27(44): 7162.

doi: 10.1002/adma.201502567     URL    
[7]
Song J Z, Xu L M, Li J H, Xue J, Dong Y H, Li X M, Zeng H B. Adv. Mater., 2016, 28(24): 4861.

doi: 10.1002/adma.v28.24     URL    
[8]
Li X M, Yu D J, Cao F, Gu Y, Wei Y, Wu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(32): 5903.

doi: 10.1002/adfm.v26.32     URL    
[9]
Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Angew. Chem. Int. Ed., 2015, 54(51): 15424.
[10]
Eaton S W, Lai M L, Gibson N A, Wong A B, Dou L T, Ma J, Wang L W, Leone S R, Yang P D. PNAS, 2016, 113(8): 1993.

doi: 10.1073/pnas.1600789113     URL    
[11]
Fu Y P, Zhu H M, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X Y, Jin S. ACS Nano, 2016, 10(8): 7963.

doi: 10.1021/acsnano.6b03916     URL    
[12]
Møller C K. Nature, 1958, 182(4647): 1436.
[13]
Cottingham P, Brutchey R L. Chem. Mater., 2018, 30(19): 6711.

doi: 10.1021/acs.chemmater.8b02295     URL    
[14]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15(8): 5635.

doi: 10.1021/acs.nanolett.5b02404     URL    
[15]
Cottingham P, Brutchey R L. Chem. Commun., 2016, 52(30): 5246.

doi: 10.1039/C6CC01088A     URL    
[16]
Liu Z K, Bekenstein Y, Ye X C, Nguyen S C, Swabeck J, Zhang D D, Lee S T, Yang P D, Ma W L, Alivisatos A P. J. Am. Chem. Soc., 2017, 139(15): 5309.

doi: 10.1021/jacs.7b01409     URL    
[17]
Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J. Angew. Chem. Int. Ed., 2016, 55(44): 13887.
[18]
Zeng P, Wei L F, Zhao H F, Zhang R, Chen H T, Liu M Z. J. Mater. Chem. C, 2020, 8(27): 9358.

doi: 10.1039/D0TC01604G     URL    
[19]
Ruan L J, Tang B, Ma Y. J. Phys. Chem. C, 2019, 123(18): 11959.
[20]
Rana P J S, Swetha T, Mandal H, Saeki A, Bangal P R, Singh S P. J. Phys. Chem. C, 2019, 123(27): 17026.
[21]
Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R. J. Phys. Chem. C, 2019, 123(29): 18103.
[22]
Li Q Y, Yang Y W, Que W X, Lian T Q. Nano Lett., 2019, 19(8): 5620.

doi: 10.1021/acs.nanolett.9b02145     URL    
[23]
Zheng C, Bi C H, Huang F, Binks D, Tian J J. ACS Appl. Mater. Interfaces, 2019, 11(28): 25410.
[24]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2435.

doi: 10.1002/adfm.v26.15     URL    
[25]
Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K. Chem. Mater., 2017, 29(12): 5168.

doi: 10.1021/acs.chemmater.7b00692     URL    
[26]
Imran M, Caligiuri V, Wang M J, Goldoni L, Prato M, Krahne R de Trizio L, Manna L. J. Am. Chem. Soc., 2018, 140(7): 2656.

doi: 10.1021/jacs.7b13477     URL    
[27]
Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L, Yang W Q. Adv. Funct. Mater., 2020, 30(19): 2000026.
[28]
de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z. ACS Nano, 2016, 10(2): 2071.

doi: 10.1021/acsnano.5b06295     URL    
[29]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science, 2016, 354(6308): 92.

doi: 10.1126/science.aag2700     URL    
[30]
Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L de Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(3): 1010.

doi: 10.1021/jacs.5b12124     pmid: 26726764
[31]
Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T. ACS Nano, 2016, 10(3): 3648.

doi: 10.1021/acsnano.5b08193     URL    
[32]
Wei S, Yang Y C, Kang X J, Wang L, Huang L J, Pan D C. Chem. Commun., 2016, 52(45): 7265.

doi: 10.1039/C6CC01500J     URL    
[33]
Ng C K, Yin W P, Li H C, Jasieniak J J. Nanoscale, 2020, 12(8): 4859.

doi: 10.1039/C9NR10726F     URL    
[34]
Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello A J, Kovalenko M V. Nano Lett., 2016, 16(3): 1869.

doi: 10.1021/acs.nanolett.5b04981     URL    
[35]
Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q. Adv. Funct. Mater., 2017, 27(23): 1701121.
[36]
Zhai W, Lin J, Li C, Hu S M, Huang Y, Yu C, Wen Z K, Liu Z Y, Fang Y, Tang C C. Nanoscale, 2018, 10(45): 21451.
[37]
Chen M, Hu H C, Yao N, Yuan X L, Zhong Q X, Cao M H, Xu Y, Zhang Q. J. Mater. Chem. C, 2019, 7(46): 14493.
[38]
Liu C, Lin J, Zhai W, Wen Z K, He X, Yu M M, Huang Y, Guo Z L, Yu C, Tang C C. RSC Adv., 2019, 9(67): 39315.
[39]
Sun C, Gao Z Y, Liu H X, Wang L, Deng Y C, Li P, Li H R, Zhang Z H, Fan C, Bi W G. Chem. Mater., 2019, 31(14): 5116.

doi: 10.1021/acs.chemmater.9b01010     URL    
[40]
Chen D Q, Zhou S, Fang G L, Chen X, Zhong J S. ACS Appl. Mater. Interfaces, 2018, 10(46): 39872.
[41]
Li Y X, Huang H, Xiong Y, Richter A F, Kershaw S V, Feldmann J, Rogach A L. ACS Nano, 2019, 13(7): 8237.

doi: 10.1021/acsnano.9b03508     URL    
[42]
Liu Y, Li F, Li Q, Yang K, Guo T, Li X, Zeng H. ACS Photonics, 2018, 5: 4504.

doi: 10.1021/acsphotonics.8b00966     URL    
[43]
Loiudice A, Strach M, Saris S, Chernyshov D, Buonsanti R. J. Am. Chem. Soc., 2019: 9b02061.
[44]
Chen Y C, Chou H L, Lin J C, Lee Y C, Pao C W, Chen J L, Chang C C, Chi R Y, Kuo T R, Lu C W, Wang D Y. J. Phys. Chem. C, 2019, 123(4): 2353.

doi: 10.1021/acs.jpcc.8b11535     URL    
[45]
Lv W, Tang X X, Li L, Xu L G, Li M G, Chen R F, Huang W. J. Phys. Chem. C, 2019, 123(39): 24313.
[46]
Long Z, Ren H, Sun J H, Ouyang J, Na N. Chem. Commun., 2017, 53(71): 9914.

doi: 10.1039/C7CC04862A     URL    
[47]
Pan Q, Hu H C, Zou Y T, Chen M, Wu L Z, Yang D, Yuan X L, Fan J, Sun B Q, Zhang Q. J. Mater. Chem. C, 2017, 5(42): 10947.
[48]
Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J. Adv. Mater., 2018, 30(29): 1801117.
[49]
Li C H, Li Y, Zhou T L, Xie R J. Opt. Mater., 2019, 94: 41.

doi: 10.1016/j.optmat.2019.04.053     URL    
[50]
Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y. ACS Nano, 2016, 10(8): 7943.

doi: 10.1021/acsnano.6b03863     URL    
[51]
Imran M, di Stasio F, Dang Z Y, Canale C, Khan A H, Shamsi J, Brescia R, Prato M, Manna L. Chem. Mater., 2016, 28(18): 6450.

doi: 10.1021/acs.chemmater.6b03081     URL    
[52]
Imran M, Ijaz P, Baranov D, Goldoni L, Petralanda U, Akkerman Q, Abdelhady A L, Prato M, Bianchini P, Infante I, Manna L. Nano Lett., 2018, 18(12): 7822.

doi: 10.1021/acs.nanolett.8b03598     URL    
[53]
Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P. J. Am. Chem. Soc., 2015, 137(51): 16008.
[54]
Dutta A, Behera R K, Pal P, Baitalik S, Pradhan N. Angew. Chem. Int. Ed., 2019, 58(17): 5552.

doi: 10.1002/anie.v58.17     URL    
[55]
Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R. ACS Appl. Mater. Interfaces, 2016, 8(42): 28824.
[56]
Shamsi J, Dang Z Y, Bianchini P, Canale C di Stasio F, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23): 7240.

doi: 10.1021/jacs.6b03166     pmid: 27228475
[57]
Lu C, Wright M W, Ma X, Li H, Itanze D S, Carter J A, Hewitt C A, Donati G L, Carroll D L, Lundin P M, Geyer S M. Chem. Mater., 2019, 31(1): 62.

doi: 10.1021/acs.chemmater.8b04876     URL    
[58]
Lv W, Li L, Xu M C, Hong J X, Tang X X, Xu L G, Wu Y H, Zhu R, Chen R F, Huang W. Adv. Mater., 2019, 31(28): 1900682.
[59]
Tang B, Ruan L J, Qin C Y, Shu A, He H M, Ma Y. Adv. Optical Mater., 2020, 8(16): 2000498.
[60]
Akkerman Q A, Meggiolaro D, Dang Z Y, de Angelis F, Manna L. ACS Energy Lett., 2017, 2(9): 2183.

doi: 10.1021/acsenergylett.7b00707     pmid: 29142911
[61]
Wang Y N, Dong Y J, Liu Q, Guo X, Zhang M J, Li Y F. Nano Energy, 2020, 78: 105150.
[62]
Wang P J, Wang B L, Liu Y C, Li L, Zhao H, Chen Y H, Li J Y, Liu S F, Zhao K. Angew. Chem. Int. Ed., 2020, 59(51): 23100.
[63]
Li Z T, Song C J, Li J S, Liang G W, Rao L S, Yu S D, Ding X R, Tang Y, Yu B H, Ou J Z, Lemmer U, Gomard G. Adv. Mater. Technol., 2020, 5(2): 1900941.
[64]
Duan Y Y, Ezquerro C, Serrano E, Lalinde E, García-Martínez J, Berenguer J R, Costa R D. Adv. Funct. Mater., 2020, 30(40): 2005401.
[65]
Huang H, Chen B K, Wang Z G, Hung T F, Susha A S, Zhong H Z, Rogach A L. Chem. Sci., 2016, 7(9): 5699.

doi: 10.1039/c6sc01758d     pmid: 30034709
[66]
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Angew. Chem. Int. Ed., 2016, 55(28): 7924.

doi: 10.1002/anie.201603698     URL    
[67]
Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G. Chem. Mater., 2018, 30(23): 8546.

doi: 10.1021/acs.chemmater.8b03442     URL    
[68]
Ye S, Sun J Y, Han Y H, Zhou Y Y, Zhang Q Y. ACS Appl. Mater. Interfaces, 2018, 10(29): 24656.
[69]
Lv W, Li L, Li M, Xu L, Huang W, Chen R. Adv. Opt. Mater., 2020, 8.
[70]
Yoon H C, Kang H, Lee S, Oh J H, Yang H, Do Y R. ACS Appl. Mater. Interfaces, 2016, 8(28): 18189.
[71]
Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S C, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Adv. Mater., 2016, 28(18): 3528.

doi: 10.1002/adma.201600064     URL    
[72]
Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L. Nano Lett., 2016, 16(2): 1415.

doi: 10.1021/acs.nanolett.5b04959     URL    
[73]
Zhang X Y, Sun C, Zhang Y, Wu H, Ji C Y, Chuai Y H, Wang P, Wen S P, Zhang C F, Yu W W. J. Phys. Chem. Lett., 2016, 7(22): 4602.

doi: 10.1021/acs.jpclett.6b02073     URL    
[74]
Pan J, Quan L N, Zhao Y B, Peng W, Murali B, Sarmah S P, Yuan M J, Sinatra L, Alyami N M, Liu J K, Yassitepe E, Yang Z Y, Voznyy O, Comin R, Hedhili M N, Mohammed O F, Lu Z H, Kim D H, Sargent E H, Bakr O M. Adv. Mater., 2016, 28(39): 8718.

doi: 10.1002/adma.201600784     URL    
[75]
Pan G C, Bai X, Xu W, Chen X, Zhai Y, Zhu J Y, Shao H, Ding N, Xu L, Dong B, Mao Y L, Song H W. ACS Appl. Mater. Interfaces, 2020, 12(12): 14195.
[76]
He Y D, Gong J H, Zhu Y Y, Feng X C, Peng H, Wang W, He H Y, Liu H, Wang L. Opt. Mater., 2018, 80: 1.

doi: 10.1016/j.optmat.2018.04.009     URL    
[77]
Kondo S, Takahashi K, Nakanish T, Saito T, Asada H, Nakagawa H. Curr. Appl. Phys., 2007, 7(1): 1.

doi: 10.1016/j.cap.2005.08.001     URL    
[78]
Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W, Kovalenko M V. Nat. Commun., 2015, 6(1): 1.
[79]
Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G C, Yu W W, Wang X Y, Zhang Y, Xiao M. J. Am. Chem. Soc., 2016, 138(11): 3761.

doi: 10.1021/jacs.5b12662     URL    
[80]
Li R X, Yu J H, Wang S, Shi Y Q, Wang Z J, Wang K, Ni Z H, Yang X Y, Wei Z P, Chen R. Nanoscale, 2020, 12(25): 13360.
[81]
Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S. Chem. Commun., 2016, 52(10): 2067.

doi: 10.1039/C5CC08643D     URL    
[82]
Tong G Q, Jiang M W, Son D Y, Qiu L B, Liu Z H, Ono L K, Qi Y B. ACS Appl. Mater. Interfaces, 2020, 12(12): 14185.
[83]
Grätzel M. Nat. Mater., 2014, 13(9): 838.

doi: 10.1038/nmat4065     URL    
[84]
Ono M, Nishihara T, Ihara T, Kikuchi M, Tanaka A, Suzuki M, Kanemitsu Y. Chem. Sci., 2014, 5(7): 2696.

doi: 10.1039/c4sc00436a     URL    
[85]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016, 7(5): 746.

doi: 10.1021/acs.jpclett.6b00002     URL    
[86]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A, 2015, 3(39): 19688.
[87]
Luo P F, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W. J. Phys. Chem. Lett., 2016, 7(18): 3603.

doi: 10.1021/acs.jpclett.6b01576     URL    
[88]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X. Science, 2019, 365(6453): 591.

doi: 10.1126/science.aav8680     URL    
[89]
Chen K Q, Jin W, Zhang Y P, Yang T Q, Reiss P, Zhong Q H, Bach U, Li Q T, Wang Y W, Zhang H, Bao Q L, Liu Y L. J. Am. Chem. Soc., 2020, 142(8): 3775.

doi: 10.1021/jacs.9b10700     URL    
[90]
Ling X F, Zhou S J, Yuan J Y, Shi J W, Qian Y L, Larson B W, Zhao Q, Qin C C, Li F C, Shi G Z, Stewart C, Hu J X, Zhang X L, Luther J M, Duhm S, Ma W L. Adv. Energy Mater., 2019, 9(28): 1900721.
[91]
Yao Z, Jin Z W, Zhang X R, Wang Q, Zhang H, Xu Z, Ding L M, Liu S F. J. Mater. Chem. C, 2019, 7(44): 13736.
[92]
Shi J W, Li F C, Yuan J Y, Ling X F, Zhou S J, Qian Y L, Ma W L. J. Mater. Chem. A, 2019, 7(36): 20936.
[93]
Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X. Angew. Chem. Int. Ed., 2019, 58(46): 16691.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[6] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[7] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[8] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[9] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[10] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[11] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[12] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[13] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[14] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[15] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.