English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 719-736 DOI: 10.7536/PC171214 前一篇   后一篇

• 综述 •

基于可再生资源含呋喃环聚酯

王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*   

  1. 中国科学院长春应用化学研究所生态环境高分子材料重点实验室 长春 130022
  • 收稿日期:2017-12-11 修回日期:2017-12-31 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 姜敏,e-mail:jiangmin@ciac.ac.cn;周光远,e-mail:gyzhou@ciac.ac.cn E-mail:jiangmin@ciac.ac.cn;gyzhou@ciac.ac.cn
  • 基金资助:
    国家自然科学基金青年基金项目(No.201604084)和吉林省博士后基金(2015年)资助

Polyesters Containing Furan Rings Based on Renewable Resources

Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*   

  1. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2017-12-11 Revised:2017-12-31 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 201604084) and the Postdoctoral Science Foundation of Jilin Province, China (2015).
2,5-呋喃二甲酸(2,5-FDCA)是基于可再生资源的二酸,来源广泛,可由果糖和半乳糖制得。近年来以2,5-呋喃二甲酸为起始原料合成聚合物的研究引起了人们的广泛关注。本文对基于可再生资源含呋喃环均聚酯及共聚酯的合成、结构和性能等方面的研究作了综述,着重阐述了以2,5-呋喃二甲酸及其衍生物为起始原料制备聚酯的新进展,并讨论了基于可再生资源含呋喃聚酯的应用及发展前景。
2,5-Furandicarboxylic acid (FDCA) is a diacid based on renewable resources and can be synthesized from fructose and galactose. Recently, polymers synthesized from FDCA have attracted more and more attention. The recent studies of synthesis, structures and properties of homopolyesters and copolyesters containing furan rings based on renewable resources, especially for the polyesters synthesized from 2,5-furandicarboxylic acid and its derivatives are summurized. The application and development of these polyesters are also discussed.
Contents
1 Introduction
2 Synthesis methods,structure and properties of polyesters containing furan ring
2.1 Synthesis methods of polyesters containing furan ring
2.2 Structures and properties of homopolyesters containing furan ring
2.3 Structures and properties of copolyesters containing furan ring
3 Composite materials and the 3D printing material containing furan ring-based polyesters
4 Conclusion

中图分类号: 

()
[1] Gandini A, Lacerda T M, Carvalho A J, Trovatti E. Chemical Reviews, 2016, 116:1637.
[2] Wu J, Eduard P, Jasinskawalc L, Rozanski A, Noordover B A J, van Es D S, Koning C E. Macromolecules, 2013, 46:384.
[3] Japu C, Ilarduya A M D, Alla A, Garcíamartín M G, Galbis J A, Muñozguerra S. Polymer Chemistry, 2013, 4:3524.
[4] Lavilla C, Ilarduya A M D, Alla A, Muñoz-Guerra S. Polymer Chemistry, 2012, 4:282.
[5] Japu C, Ilarduya A M D, Alla A, García-Martín M G, Galbis J A, Muñoz-Guerra S. Macromolecular Chemistry & Physics, 2014, 215:2048.
[6] Zakharova E, Alla A, Ilarduya A M D, Muñoz-Guerra S. RSC Advances, 2015, 5:46395.
[7] Japu C, Martínez D I A, Alla A, Jiang Y, Loos K, Muñoz-Guerra S. Biomacromolecules, 2015, 16:868.
[8] Wei Z, Long C, Yu Z. Polymer, 2009, 50:1311.
[9] Liu L F, Yu J Y, Cheng L D, Qu W W. Composites Part A Applied Science & Manufacturing, 2009, 40:669.
[10] Chen G Q. Chemical Society Reviews, 2009, 38:2434.
[11] Gonis G, Amstutz E D. Journal of Organic Chemistry, 1962, 27:2946.
[12] Yu Z L, Zhou J D, Cao F, Wen B B, Zhu X, Wei P. Journal of Applied Polymer Science, 2013, 130:1415.
[13] Schrock A K, Hamilton H S C, Johnson N D, Rosario C D, Thompson B D, Ulrich K, Coggio W D. Polymer, 2016, 101:233.
[14] And M A C, Grinstaff M W. Macromolecules, 2016, 39:609.
[15] Wu L B, Mincheva R, Xu Y T, Raquez J M, Dubois P. Biomacromolecules, 2012, 13:2973.
[16] Bakr M A, Mahmud A, Sarker M, Islam M A. Journal of Polymer Materials, 2015, 32:1.
[17] Wei Z Y, Zhou C, Yu Y, Li Y. RSC Advances, 2015, 5:42777.
[18] Lee J, Min K J, Oh H, Sohn Y S, Jeong B. Polymer, 2006, 47:3760.
[19] Kwiecień M, Kwiecień I, Radecka I, Kannappan V, Morris M R, Adamus G. RSC Advances, 2017, 7:20469.
[20] Tang J C, Zhang Z J, Song Z F, Chen L R, Hou X, Yao K D. European Polymer Journal, 2006, 42:3360.
[21] Tsanaktsis V, Papageorgiou D G, Exarhopoulos S, Bikiaris D N, Papageorgiou G Z. Crystal Growth & Design, 2015, 15:5505.
[22] Vannini M, Marchese P, Celli A, Lorenzetti C. Green Chemistry, 2015, 17:4162.
[23] Szymczyk A. European Polymer Journal, 2009, 45:2653.
[24] Wang Q M. Polymer Bulletin, 2013, 15:129.
[25] Ma J P, Pang Y, Wang M, Xu J, Ma H, Nie X. Journal of Materials Chemistry, 2012, 22:3457.
[26] Cristobal J L V, Mendoza G A P. Journal of Applied Polymer Science, 2010, 43:1605.
[27] Yoon W J, Oh K S, Koo J M, Kim J R, Lee K J, Im S S. Macromolecules, 2013, 46:2930.
[28] Park H S, Gong M S, Knowles J C. Journal of Biomaterials Applications, 2012, 27:99.
[29] Risti? I S, Vuki? N, Caki? S, Simendi? V, Risti? O, Budinski-Simendi? J. Journal of Polymers & the Environment, 2012, 20:519.
[30] Lee J, Lee S, Yoon D, Yoon W J, Im S S, Moon B, Oh H B. Rapid Communications in Mass Spectrometry Rcm, 2013, 27:1913.
[31] Yoon W J, Hwang S Y, Koo J M, Lee Y J, Sang U L, Im S S. Macromolecules, 2013, 46:7219.
[32] Zhang F C, Wang Q X, Wang L P, Bai Y P. Journal of Applied Polymer Science, 2017:45444.
[33] Lv A, Li Z L, Du F S, Li Z C. Macromolecules, 2014, 47:7707.
[34] Wu Y M, Xie Q W, Gao C H, Wang T, Wang C X. Polymer Engineering & Science, 2014, 54:2515.
[35] Shivarkar A B, Gaykar D V, Jain R K. Progress in Organic Coatings, 2015, 89:75.
[36] Takagaki A, Nishimura S, Ebitani K. Catalysis Surveys from Asia, 2012, 16(3):164.
[37] Jong E, Higson A, Walsh P, Wellisch M. Biofuels Bioproducts & Biorefining, 2012, 6(6):606.
[38] Burgess S K, Kriegel R M, Koros W J. Macromolecules, 2014, 47:1383.
[39] Wu J P, Xie H Z, Wu L B, Li B G, Dubois P. RSC Advances, 2017, 7:13877.
[40] Tsanaktsis V, Bikiaris D N, Guigo N, Exarhopoulos S, Papageorgiou D G, Sbirrazzuoli N, Papageorgiou G Z. RSC Advances, 2015, 5:74592.
[41] Martino L, Niknam V, Guigo N, Berkel J G V, Sbirrazzuoli N. RSC Advances, 2016, 6:59800.
[42] Deng J, Liu X Q, Li C, Jiang Y H, Zhu J. RSC Advances, 2015, 5:15930.
[43] Sousa A F, Matos M, Freire C S R, Silvestre A J D, Coelho J F J. Polymer, 2013, 54:513.
[44] Papageorgiou G Z, Papageorgiou D G, Tsanaktsis V, Bikiaris D N. Polymer, 2015, 62:28.
[45] Morales-Huerta J C, Ilarduya A M D, Muñoz-Guerra S. Polymer, 2016, 87:148.
[46] Lotti N, Munari A, Gigli M, Gazzano M, Tsanaktsis V, Bikiaris D N, Papageorgiou G Z. Polymer, 2016, 103:288.
[47] Kwiatkowska M, Kowalczyk I, Kwiatkowski K, Szymczyk A, Ros?aniec Z. Polymer, 2016, 99:503.
[48] Burgess S K, Karvan O, Johnson J R, Kriegel R M, Koros W J. Polymer, 2014, 55:4748.
[49] Papageorgiou G Z, Tsanaktsis V, Bikiaris D N. Physical Chemistry Chemical Physics Pccp, 2014, 16:7946.
[50] Van Berkel J G, Guigo N, Kolstad J J, Sipos L, Wang B, Dam M A, Sbirrazzuoli N. Macromolecular Materials & Engineering, 2015, 300:466.
[51] Codou A, Guigo N, Van Berkel J, De Jong E, Sbirrazzuoli N. Macromolecular Chemistry & Physics, 2015, 215:2065.
[52] Su Y, Brown H M, Huang X W, Zhou X D, Amonette J E, Zhang Z C. Applied Catalysis A-General, 2009, 361:117.
[53] Zhou L L, He Y M, Ma Z W, Liang R J, Wu T H, Wu Y. Carbohydrate Polymers, 2015, 117:694.
[54] Zhao S, Cheng M X, Li J Z, Tian J, Wang X H. Chemical Communications, 2011, 47:2176.
[55] Li H, Zhang Q Y, Liu X F, Chang F, Hu D Y, Zhang Y P, Xue W, Yang S. RSC Advances, 2013, 3:3648.
[56] Banerjee A, Dick G R, Yoshino T, Kanan M W. Nature, 2016, 531:215.
[57] Cawse J L, Stanford J L, Still R H. Macromolecular Chemistry & Physics, 1984, 185:709.
[58] Quillerou J, Belgacem M N, Gandini A, Rivero J, Roux G. Polymer Bulletin, 1989, 21:555.
[59] Belgacem M N, Quillerou J, Gandini A, Rivero J, Roux G. European Polymer Journal, 1989, 25:1125.
[60] Belgacem M N, Quillerou J, Gandini A. European Polymer Journal, 1993, 29:1217.
[61] Neumann C N, Bulach W D, Rehahn M, Klein R. Macromolecular Rapid Communications, 2011, 32:1373.
[62] Liu X X, Du P F, Li L, Zhen Z, Wang X L, Joncheray T, Zhang Y F. Polymer Bulletin, 2013, 70:2319.
[63] Mignard N, Okhay N, Jegat C, Taha M. Journal of Polymer Research, 2013, 20:233.
[64] Mitiakoudis A, Gandini A. Macromolecules, 1991, 24:649.
[65] Gharbi S, Gandini A. Acta Polymerica, 1999, 50:293.
[66] Liu Y L, Chen Y W. Macromolecular Chemistry & Physics, 2010, 208:224.
[67] Fehrenbacher U, Grosshardt O, Kowollik K, Tübke B, Dingenouts N, Wilhelm M. Chemie Ingenieur Technik-CIT, 2010, 81:1829.
[68] Galan J F, Tang C N, Chakrabarty S, Liu Z, Moyna G, Pophristic V. Physical Chemistry Chemical Physics Pccp, 2013, 15:11883.
[69] Cao M, Zhang C H, He B, Huang M J, Jiang S J. Macromolecular Research, 2017, 7:722.
[70] Jiang Y, Maniar D, Woortman A, Loos K. RSC Advances, 2016, 6:67941.
[71] Jiang Y, Maniar D, Woortman A J J, Loos K. Biomacromolecules, 2015, 16:3674.
[72] Endah Y K, Han S H, Kim J H, Kim N K, Kim W N, Lee H S, Lee H. Journal of Applied Polymer Science, 2016, 133:43391.
[73] Wilsens C H R M, Deshmukh Y S, Noordover B A J, Rastogi S. Macromolecules, 2014, 47:6196.
[74] Wang J G, Liu X Q, Zhang Y J, Liu F, Zhu J. Polymer, 2016, 103:1.
[75] Wu B S, Xu Y T, Bu Z Y, Wu L B, Li B G, Dubois P. Polymer, 2014, 55:3648.
[76] 李静涛(Li J T). 河南化工(Henan Chemical Industry), 2013, 30(5):9.
[77] Gomes M, Gandini A, Silvestre A J D, Reis B. Journal of Polymer Science Part A Polymer Chemistry, 2011, 49:3759.
[78] Moore J A, Kelly J E. Macromolecules, 1978, 11:568.
[79] Sousa A F, Coelho J F J, Silvestre A J D. Polymer, 2016, 98:129.
[80] Morales-huerta J C, Martínez de Ilarduya A, Muñoz-Guerra S. ACS Sustainable Chemistry & Engineering, 2016, 4, 4965.
[81] O'hagan D, Zaidi N A. Polymer, 1994, 35:3576.
[82] Knani D, Gutman A L, Kohn D H. Journal of Polymer Science Part A Polymer Chemistry, 1993, 31:1221.
[83] Uyama H, Suda S, Kikuchi H, Kobayashi S. Chemistry Letters, 1997, 11:1109.
[84] Uyama H, Kobayashi S. Chemistry Letters, 1994, 23:1687.
[85] Uyama H, Inada K, Kobayashi S. Chemistry Letters, 1998, 1998:1285.
[86] Okumura S, Iwai M, Tominaga Y. Agricultural & Biological Chemistry, 1984, 48:2805.
[87] Jiang Y, Woortman A J, Go A V E, Petrovi? D M, Loos K. Biomacromolecules, 2014, 15:2482.
[88] Jiang M, Liu Q, Zhang Q, Ye C, Zhou G Y. Journal of Polymer Science Part A Polymer Chemistry, 2012, 50:1026.
[89] Thiyagarajan S, Vogelzang W, Knoop R J I, Frissen A E, Van Haveren J, Van Es D S. Green Chemistry, 2014, 16:1957.
[90] Tsanaktsis V, Terzopoulou Z, Nerantzaki M, Papageorgiou G Z, Bikiaris D N. Materials Letters, 2016, 178:64.
[91] Tsanaktsis V, Papageorgiou G Z, Bikiaris D N. Journal of Polymer Science Part A Polymer Chemistry, 2015, 53:2617.
[92] 姜敏(Jiang M), 周光远(Zhou G Y), 张强(Zhang Q), 叶冲(Ye C), 敖玉辉(Ao Y H). 应用化学(Applied Chemistry), 2012, 29:751.
[93] 姜敏(Jiang M), 刘茜(Liu Q), 李洋(Li Y), 张强(Zhang Q), 周光远(Zhou G Y). 高分子学报(Acta Polymerica Sinica), 2013, 46:24.
[94] 李连贵(Li L G), 李洋(Li Y), 叶冲(Ye C), 张强(Zhang Q), 姜敏(Jiang M), 周光远(Zhou G Y). 应用化学(Applied Chemistry), 2013, 30:661.
[95] Stoclet G, Sart G G D, Yeniad B, Vos S D, Lefebvre J M. Polymer, 2015, 72:165.
[96] Ma J P, Yu X F, Xu J, Pang Y. Polymer, 2012, 53:4145.
[97] Zhu J H, Cai J L, Xie W C, Chen P H, Gazzano M, Scandola M, Gross R A. Macromolecules, 2013, 46:796.
[98] Pan T, Deng J, Xu Q, Zuo Y, Guo Q X, Fu Y J. ChemSusChem, 2013, 6:47.
[99] Shono T, Hyono K, Hachihama Y. Journal of the Society of Chemical Industry Japan, 1960, 63:176.
[100] Gandini A, Silvestre A J D, Neto C P, Sousa A F, Gomes M. Journal of Polymer Science Part A Polymer Chemistry, 2010, 47:295.
[101] Gandini A. Macromolecules, 2008, 41:37.
[102] Gruter G M, Sipos L, Dam M A. Combinatorial Chemistry & High Throughput Screening, 2011, 10:1.
[103] Gubbels E, Jasinska-Walc L, Koning C E. Journal of Polymer Science Part A Polymer Chemistry, 2013, 51:890.
[104] Wu J, Eduard P, Thiyagarajan S, Noordover B A J, van Es D S, Koning C E. Chemsuschem, 2015, 8:67.
[105] Tsanaktsis V, Terzopoulou Z, Exarhopoulos S, Bikiaris D N, Achilias D S, Papageorgiou D G, Papageorgiou G Z. Polymer Chemistry, 2015, 6:8284.
[106] Matos M, Sousa A F, Silvestre A J D. Macromolecular Chemistry & Physics, 2016, 218:1600492.
[107] 姜敏(Jiang M), 芦婷婷(Lu T T), 姜国伟(Jiang G W), 张强(Zhang Q), 周光远(Zhou G Y). 高分子学报(Acta Polymerica Sinica), 2013, 46:1092.
[108] Jiang M, Lu T T, Zhang Q, Chen Y, Zhou G Y. Journal of Renewable Materials, 2015, 3:120.
[109] Zhou W D, Wang X W, Yang B, Xu Y, Zhang W, Zhang Y H, Ji J H. Polymer Degradation and Stability, 2013, 98:2177.
[110] Wang G Q, Jiang M, Zhang Q, Wang R, Tong X B, Xue S Y, Zhou G Y. Polymer Degradation & Stability, 2017, 143:1.
[111] Diao L C, Su K M, Li Z H, Ding C K. RSC Advances, 2016, 6:27632.
[112] Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Salatelli E, Manaresi P, Munari A. European Polymer Journal, 2016, 81:397.
[113] Zhou W D, Zhang Y J, Xu Y, Wang P L, Gao L, Zhang W, Ji J H. Polymer Degradation & Stability, 2014, 109:21.
[114] Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, Nasim-Afzal Z, Cauët S I, Davies T E, Rivera-Toledo M, Lopez-anchez J A. Journal of Polymer Science Part A Polymer Chemistry, 2016, 54:2876.
[115] Wang G Q, Jiang M, Zhang Q, Wang R, Zhou G Y. Polymer Degradation & Stability, 2017, 144:121.
[116] Matos M, Sousa A F, Fonseca A C, Freire C S R, Coelho J F J, Silvestre A J D. Macromolecular Chemistry & Physics, 2014, 215:2175.
[117] Wang G Q, Jiang M, Zhang Q, Wang R, Zhou G Y. RSC Advances, 2017, 7:13798.
[118] Burgess S K, Wenz G B, Kriegel R M, Koros W J. Polymer, 2016, 98:305.
[119] Gubbels E, Jasinska-Walc L, Noordover B A J, Koning C E. European Polymer Journal, 2013, 49:3188.
[120] Fan C C, Pang C C, Liu X H, Ma J B, Gao H. Green Chemistry, 2016, 18, 6320.
[121] Hu Y S, Prattipati V, Mehta S, Schiraldi D A, Hiltner A, Baer E. Polymer, 2005, 46:2685.
[122] Martino L, Guigo N, Berkel J G V, Sbirrazzuoli N. Composites Part B Engineering, 2017, 110:96.
[123] Kucherov F A, Gordeev E G, Kashin A S, Ananikov V P. Angewandte Chemie International Edition, 2017, 56:15931.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[8] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[9] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[10] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[11] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

基于可再生资源含呋喃环聚酯