English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 847-863 DOI: 10.7536/PC170925 前一篇   后一篇

• 综述 •

二硫化钼薄膜的刻蚀方法及其应用

奚清扬1, 刘劲松1,2*, 李子全1,3, 朱孔军2, 台国安2*, 宋若谷1   

  1. 1. 南京航空航天大学 材料科学与技术学院 南京 211106;
    2. 南京航空航天大学 机械结构力学及控制国家重点实验室 南京 210016;
    3. 南京邮电大学 材料科学与工程学院 南京 210003
  • 收稿日期:2017-09-25 修回日期:2017-12-27 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 刘劲松,e-mail:jsliu@nuaa.edu.cn;台国安,e-mail:taiguoan@nuaa.edu.cn E-mail:jsliu@nuaa.edu.cn;taiguoan@nuaa.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(No.NS2017038)、国家自然科学基金项目(No.51372114,61474063,51672130)、江苏省高等学校大学生实践创新训练计划项目(No.201710287032X)和江苏省自然科学基金项目(No.BK20151475)资助

Etching Methods and Application of Molybdenum Disulfide Film

Qingyang Xi1, Jinsong Liu1,2*, Ziquan Li1,3, Kongjun Zhu2, Guoan Tai2*, Ruogu Song1   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. College of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received:2017-09-25 Revised:2017-12-27 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities (No.NS2017038),the National Natural Science Foundation of China (No.51372114,61474063,51672130),the Project of Practice Innovation Training Program for College Students in Jiangsu (No.201710287032X),and the Natural Science Foundation of Jiangsu Province (No.BK20151475).
过渡金属硫化物因能带结构与层数具有明显的依赖关系而受到广泛关注,尤其是二维二硫化钼(MoS2)薄膜因其优良的光电性能而成为研究热点。目前,化学气相沉积法(CVD)和剥离法已成为制备MoS2薄膜的主要方法,但这两种方法均存在难以精确控制MoS2层数的问题,研究证实通过刻蚀手段能够对MoS2薄膜层数进行进一步加工,从而得到单层或特定层数的样品。本文综述了基于不同刻蚀原理的MoS2薄膜刻蚀技术的国内外研究进展,分析讨论了不同刻蚀技术对刻蚀后MoS2薄膜质量的影响,介绍了MoS2刻蚀方法在场效应晶体管(FET)以及其他光电器件领域的实际应用和发展前景,最后对将来研究中需要着力解决的问题进行了展望。
Transition metal dichalcogenides (TMDCs) have been widely concerned due to dependence of its energy band on the number of layers. Especially the two-dimensional molybdenum disulfide (MoS2) film has become a research hot spot because of its excellent photoelectric properties. So far, chemical vapor deposition (CVD) and exfoliation have become the main methods for preparing MoS2 films, but it is very difficult to precisely control the layers of MoS2 using these methods. Research confirms that the MoS2 films can be further processed by etching methods so as to obtain the sample with a monolayer or a specific number of layers. Therefore, in this paper the research progress about etching technology of MoS2 films based on different etching mechanisms is reviewed and the influence of different etching techniques on the quality of etched films is analyzed. Moreover, the application and prospects of these etching methods in field effect transistor(FET) and other optoelectronic devices are also introduced. Finally, problems that need to be solved in the future study are prospected.
Contents
1 Introduction
2 Physical properties of molybdenum disulfide films
2.1 Crystal structure and band structure
2.2 Optical properties
3 Etching methods of molybdenum disulfide films
3.1 Plasma etching
3.2 Laser etching
3.3 Oxygen/air etching
3.4 Other chemical etching methods
4 Application of etching methods in optoelectronic devices
4.1 Field effect transistor
4.2 Other optoelectronic devices
5 Conclusion and outlook

中图分类号: 

()
[1] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. Nature, 2012, 490:192.
[2] Subbaiah V Y P, Saji K J, Tiwari A. Adv. Funct. Mater., 2016, 26:2046.
[3] 尤运城(You Y C), 曾甜(Zeng T), 刘劲松(Liu J S), 胡廷松(Hu T S), 台国安(Tai G A). 化学进展(Progress in Chemistry), 2015, 27(11):1578.
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6:147.
[5] Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J, Hersam M C. Appl. Phys. Lett., 2013, 102:173107.
[6] Dattatray J L, Liu B, Matte H S S R, Dravid V P, Rao C N R. ACS Nano, 2012, 6:5635.
[7] Ghatak S, Pal A N, Ghosh A. ACS Nano, 2011, 5:7707.
[8] Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A. Nano Lett., 2014, 14:1337.
[9] Huang Y, Wu J, Xu. X, Ho Y, Ni G, Zou Q, Koon G K W, Zhao W, Neto A, Eda G, Shen C, Özyilmaz B. Nano Res., 2013, 6:200.
[10] Brown N, Cui N, Mckinlev A. Appl. Surf. Sci., 1998, 134:11.
[11] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.
[12] Fontana M, Deppe T, Boyd A K, Rinzan M, Liu A Y, Paranjape M, Barbara P. Sci. Rep., 2013, 3:1634.
[13] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6:74.
[14] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M. Nano Lett., 2013, 13:1416.
[15] Guan Z, Wang P, Li Q, Li Y, Fu X, Yang J. Chem. Eng. J., 2017, 327:397.
[16] Hu J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Appl. Catal. B-Environ., 2017, 217:224.
[17] Thangavel S, Thangavel S, Raghavan N, Alagu R, Venugopal G. J. Phys. Chem. Solids., 2017, 110, 266.
[18] Wang J, Jin J, Wang X, Yang S, Zhao Y, Wu Y, Dong S, Sun J, Sun J. J. Colloid. Interf. Sci., 2017, 505:805.
[19] Wang Y, Sunarso J, Wang F, Zhao B, Liu X, Chen G. Ceram. Int., 2017, 43:11028.
[20] Zhang S, Wang L, Liu C, Luo J, Crittenden J, Liu X, Cai T, Yuan J, Pei Y, Liu Y. Water. Res., 2017, 121:11.
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10:1271.
[22] Kadantsev E S, Hawrylak P. Solid. State. Commun., 2012, 152:909.
[23] 曾甜(Zeng T), 尤运城(You Y C), 王旭峰(Wang X F), 胡廷松(Hu T S), 台国安(Tai G A). 化学进展(Progress in Chemistry), 2016, 28(4):459.
[24] Bertrand P A. Phys. Rev. B, 1991, 4:5745.
[25] Bernardi M, Palummo M, Grossman J C. Nano Lett., 2013, 13:3664.
[26] Li Y, Qi Z, Liu M, Wang Y, Cheng X, Zhang G, Sheng L. Nanoscale, 2014, 6:15248.
[27] Mouri S, Miyauchi Y, Matsuda K. Nano Lett., 2013, 13:5944.
[28] Zhou H Q, Yu F, Liu Y Y, Zou X L, Cong C X, Qiu C Y, Yu T,Yan Z, Shen X N, Sun L F, Boris I Y, James M T. Nano Res., 2013, 6:703.
[29] Ramana C V, Becker U, Shutthanandan V, Julien C M. Geochem. Trans., 2008, 9:8.
[30] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24:2320.
[31] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J, Small, 2012, 8:966.
[32] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12:1538.
[33] Tai G A, Zeng T, Yu J, Zhou J X, You Y C, Wang X F, Wu H R, Sun X, Hu T S, Guo W L. Nanoscale, 2016, 8:2234.
[34] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S,Yakobson B I, Idrobo J C, Ajayan P M, Lou J. Nat. Mater., 2013, 12:754.
[35] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13:2615.
[36] Zou X, Liu Y, Yakobson B I. Nano Lett., 2013, 13:253.
[37] Van D Z M, Huang P Y, Chenet D A, Berkelbach T C,You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12:554.
[38] Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H. ACS Nano, 2013, 7:4202.
[39] Xiao S Q, Xiao P, Zhang X C, Yan D W, Gu X F, Qin F, Ni Z H, Han Z J, Ostrikov K. Sci. Rep., 2016, 6:19945.
[40] Jeon M H, Ahn C, Kim H U, Kim K N, Lin T Z, Qin H Y, Kim Y, Lee S, Kim T, Yeom G Y. Nanotechnology, 2015, 26:355706.
[41] Lin T Z, Kang B T, Jeon M H, Huffman C, Jeon J H, Lee S J, Han W, Lee J Y, Lee S H, Yeom G Y, Kim K N. ACS Appl. Mater. Inter., 2015, 7:15892.
[42] Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W. ACS Appl. Mater. Inter., 2017, 9:11967.
[43] Varghese A, Sharma C H, Thalakulam M. Nanoscale, 2017, 9:3818.
[44] Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J, Steele G A. Nano Lett., 2012, 12:3187.
[45] Ko P J, Thu T V, Takahashi H, Abderrahmane A, Takamura T, Sandhu A. AIP Conf. Proc., 2014,73:1585.
[46] Sunamura K, Page T R, Yoshida K, Yano T, Hayamizu Y. Mater. Chem. C, 2016, 4:3268.
[47] Wu J, Li H, Yin Z Y, Li H, Liu J Q, Cao X H, Zhang Q, Zhang H. Small, 2013, 9:3314.
[48] Lv D H, Wang H L, Zhu D C, Lin J, Yin G L, Lin F, Zhang Z, Jin C H. Sci. Bull., 2017, 62:846.
[49] Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G. Phys. Chem. C, 2013, 117:25643.
[50] Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. Phys. Rev. Lett., 2000, 84:951.
[51] Bollinger M V, Jacobsen K W, Nørskov J K. Phys. Rev. B, 2003, 67:085410.
[52] Vojvodic A, Hinnemann B, Nørskov J K. Phys. Rev. B, 2009, 80:125416.
[53] Walter T N, Kwok F, Simchi H, Aldosari H M, Mohney S E. J. Vac. Sci. Technol. B, 2017, 35:2166.
[54] Ionescu R, George A, Ruiz I, Favors Z, Mutlu Z, Liu C, Ahmed K, Wu R, Jeong J S, Zavala L, Mkhoyan K A, Ozkan M, Ozkan C S. Chem. Commun., 2014, 50:11226.
[55] Amara K K, Chu L Q, Kumar R, Toh M, Eda G. APL Mater., 2014, 2:092509.
[56] Lin H C, Wang J W, Luo Q Q, Peng H, Luo C H, Qi R J, Huang R, Sejdic J T, Duan C G. J. Alloy. Compo., 2017, 699:222.
[57] Lee C H, Lee E W, McCulloch W, Eddine Z J, Krishnamoorthy S, Newburger M J, Kawakami R K, Wu Y Y, Rajan S. Appl. Phys. Express, 2017, 10:035201.
[58] Leong W S, Thong J T L.Proceedings of the 15th IEEE International Conference on Nanotechnology, Rome,Italy, 2015.
[59] Tai G A, Zeng T, Li H X, Liu J S, Kong J Z, Lv F Y. Mater. Res. Express, 2014, 1:035605.
[60] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci. USA, 2005, 102:10451.
[61] Lembke D, Kis A. ACS Nano, 2012, 6:10070.
[62] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[63] Li H, Lu G, Yin Z, He Q, Zhang Q, Zhang H. Small, 2012, 8:682.
[64] Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand B P. ACS Appl. Mater. Inter., 2011, 3:3244.
[65] Hamwi S, Meyer J, Winkler T, Riedl T, Kowalsky W. Appl. Phys. Lett., 2009, 94:253307.
[66] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M. Nat. Mater., 2014, 13:1128.
[67] Leong W S, Luo X, Li Y, Khoo K H, Quek S Y, Thong J T L. ACS Nano, 2015, 9:869.
[68] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L. J. Sci. Rep., 2014, 4:3826.
[69] Lopez-Sanchez O, Alarcon-Llado E, Koman V, Fontcuberta-i-Morral A, Radenovic A, Kis A. ACS Nano, 2014, 8:3042.
[1] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[2] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[3] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[4] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[5] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[6] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[7] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[8] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[9] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[10] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[11] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[12] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[13] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[14] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[15] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.