English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 512-523 DOI: 10.7536/PC200636 前一篇   后一篇

• 综述 •

过渡金属配合物催化炔烃和亲核试剂的羰化反应

郭文迪1, 刘晔1,*()   

  1. 1 华东师范大学化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室 上海 200062
  • 收稿日期:2020-06-11 修回日期:2020-08-10 出版日期:2021-04-20 发布日期:2020-12-22
  • 通讯作者: 刘晔
  • 基金资助:
    国家自然科学基金面上项目(21972045)

Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes

Wendi Guo1, Ye Liu1()   

  1. 1 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2020-06-11 Revised:2020-08-10 Online:2021-04-20 Published:2020-12-22
  • Contact: Ye Liu
  • Supported by:
    the National Natural Science Foundation of China(21972045)

羰化反应(氢甲酰化反应、羰化羧酸化反应、羰化酯化反应、羰化酰胺化反应等)是制备醛(/醇)、羧酸、羧酸酯、酰胺等高附加值含氧羰基化合物有效的途径,具有反应原子经济性高、目标羰基化合物选择性高、反应条件较氧化过程更温和可控的优势。羰化反应的原料包括烯烃、炔烃、卤代烃、醇等有机化合物。其中,在过渡金属催化剂作用下,炔烃与不同的亲核试剂(水、醇、胺等)通过发生(单/双)羰化反应可以100%原子经济性地合成(不饱和/饱和)羰基化合物(如羧酸、羧酸酯、酰胺),制得的羧酸、羧酸酯、酰胺等羰基化合物不仅在医药、农业、日化工业中有广泛用途,还是聚合、Aldol 缩合和Micheal加成等有机反应中过程反应的重要原料。因此,过渡金属催化的炔烃羰化反应成为均相催化领域受到广泛关注的研究内容。本文从不同类型的炔烃羰化反应和反应中所用羰源等方面综述了近十年来该领域的研究现状并展望其发展前景。

Carbonylation(such as hydroformylation, alkoxycarbonylation, hydroxycarbonylation, aminocarbonylation) provides an effective way to synthesize the high value-added carbonyl compounds such as aldehydes(/alcohols), carboxylic acids, carboxylate esters, amides etc., which is advantageous with high atom-economy, excellent selectivities, and mild conditions in comparison to the oxidation. The raw materials involved in carbonylation are comprised of alkenes, alkynes, halohydrocarbons, alcohols etc. Thereinto, with CO or CO-surrogates as carbonyl source, carbonylation of alkyne with different nucleophiles(such as water, alcohols, amines) over transition-metal catalysts, is one of the most attractive processes to produce the corresponding carbonyl compounds like carboxylic acids, carboxylate esters and amines with 100% atom-economy. The obtained carbonyl compounds are widely applied in the production of pharmaceuticals, foods, and cosmetics as well as organic synthesis like polymerization, Aldol condensation and Micheal addition. In this review, the research status on carbonylation of alkynes in recent decade, in terms of reaction types and carbonyl sources, are summarized and prospected.

Contents

1 Introduction

2 Alkoxycarbonylation of alkynes

3 Aminocarbonylation of alkynes

4 Hydroxycarbonylation of alkynes

5 Double carbonylation of alkynes

6 CO surrogates in carbonylation of alkynes

6.1 Formates as CO source

6.2 Formic acid as CO source

6.3 Metal-carbonyl compounds as CO source

7 Conclusion and outlook

()
图式1 过渡金属催化的炔烃羰化反应
Scheme 1 Carbonylation of alkynes catalyzed by transition metal catalysts
图式 2 过渡金属催化的炔烃的羰化反应机理
Scheme 2 General reaction mechanism: transition metal-catalyzed carbonylation of alkynes
图式3 2-PyPPh2在钯催化炔烃羰化酯化反应中的应用[10]
Scheme 3 The application of ligands 2-PyPPh2 in Pd-catalyzed alkoxycarbonylation of alkynes[10]
图式4 含嘧啶基膦配体在钯催化炔烃羰化酯化中的应用[11]
Scheme 4 The application of ligands contaning pyrimidine groups in Pd-catalyzed alkoxycarbonylation of alkynes[11]
图式5 膦配体L4在钯催化炔烃羰化酯化中的应用[12]
Scheme 5 Pd-catalyzed alkoxycarbonylation of terminal alkynes with phosphine ligand L4[12]
图式6 膦配体L5在钯催化炔烃羰化酯化中的应用[13]
Scheme 6 Pd-catalyzed alkoxycarbonylation of terminal alkynes with phosphine ligand L5[13]
图式7 金刚烷膦配体L6在炔烃羰化酯化反应中的应用[14]
Scheme 7 The application of phospha-adamantyl ligand L6 in Pd-catalyzed alkoxycarbonylation of alkynes[14]
图式8 双功能配体L7用于钯催化炔烃的羰化酯化反应[15]
Scheme 8 Bifunctional ligands L7 for Pd-catalyzed selective alkoxycarbonylation of alkynes[15]
图式9 L8修饰的钯催化剂在炔烃羰化酯化反应中的应用[16]
Scheme 9 The application of L8 modified palladium catalyst in alkoxycarbonylation of alkynes[16]
图式10 Pd(dppf)(PhCN)2](BF4)2催化炔烃的羰化酯化反应生成直链酯[17]
Scheme 10 Alkoxycarbonylation of alkynes to the linear product catalyzed by Pd(dppf)(PhCN)2](BF4)2[17]
图式11 Pd2(dba)3/BDTPMB/MsOH催化炔烃的羰化酯化反应生成直链酯[18]
Scheme 11 Alkoxycarbonylation of alkynes to the linear product catalyzed by Pd2(dba)3/BDTPMB/MsOH[18]
图式12 钯催化区域选择性炔烃羰化胺化反应[19,20]
Scheme 12 Pd-catalyzed regioselective aminocarbonylation of terminal alkynes[19,20]
图式13 钯催化区域选择性炔烃羰化胺化反应[21]
Scheme 13 Pd-catalyzed regioselective aminocarbonylation of terminal alkynes[21]
图式14 以离子液体[Bmim]NTf2为溶剂的钯催化炔烃羰化胺化反应[22]
Scheme 14 Pa-catalyzed aminocarbonylation of alkynes using ionic liquid [Bmim]NTf2 as solvent[22]
图式15 钯催化炔烃与脂肪胺羰化胺化反应[23]
Scheme 15 Pd-catalyzed aminocarbonylation of alkynes with aliphatic amines[23]
图式16 通过C—N键断裂实现的钯催化炔烃与叔胺的羰化胺化反应[24]
Scheme 16 Palladium-catalyzed hydroaminocarbonylation of alkynes with tertiary amines via C—N bond cleavage[24]
图式17 铁催化炔烃双羰化胺化反应[25]
Scheme 17 Fe-catalyzed bis-aminocarbonylation of alkynes[25]
图式18 以ZrF4作助剂的铁催化炔烃羰化胺化反应[26]
Scheme 18 ZrF4 as co-catalyst promoted Fe-catalyzed aminocarbonylation[26]
图式19 以无机铵盐为胺源的钯催化炔烃羰化胺化反应[27,28]
Scheme 19 Pd-catalyzed bis-aminocarbonylation of alkynes using ammonium salt as amine source[27,28]
图式20 钯催化丙炔的氢羧化反应[32]
Scheme 20 Palladium catalyzed hydroxycarboxylation of acetylene[32]
图式21 Pd2(dba)3/BDTPMB/MsOH催化炔烃的氢羧化应生成直链酯[18]
Scheme 21 Hydroxycarboxylation of to the linear product catalyzed by Pd2(dba)3/BDTPMB/MsOH[18]
图式22 在BINAPS存在下钯催化炔烃的氢羧化反应[33]
Scheme 22 Pd-catalyzed hydroxycarbonylation of alkynes in the presence of BINAPS[33]
图式23 三功能配体L10参与钯催化炔烃的羰化反应[34]
Scheme 23 Tri-functional ligand L10 for Pd-catalyzed hydroxycarbonylation of alkynes[34]
图式24 Pd-L11催化炔烃的双羰化酯化反应[35]
Scheme 24 Bis-alkoxycarbonylation of alkynes over Pd-L11 catalyst[35]
图式25 双功能配体L12参与钯催化炔烃的双羰化酯化反应[36]
Scheme 25 Bi-functional ligand L12 for Pd-catalyzed bis-alkoxycarbonylation of alkynes[36]
图式26 Pd-Xantphos/Al(OTf)3双功能催化体系协同催化炔烃的双羰化酯化反应[37]
Scheme 26 Bis-alkoxycarbonylation of alkynes over Pd-Xantphos/Al(OTf)3 bifunctional catalytic system in the way of synergetic catalysis[37]
图式27 Rh催化内炔与2-吡啶甲醇的双羰化酯化反应[38]
Scheme 27 Rh-catalyzed bis-alkoxycarbonylation of internal alkynes with pyridin-2-ylmethanol[38]
图式28 Fe3(CO)12催化炔烃的双羰化胺化生成酰亚胺[41]
Scheme 28 Fe3(CO)12-catalyzed aminocarbonylation of alkynes to succinimides[41]
图式29 Pd(xantphos)Cl2催化炔烃的双羰化胺化反应生成酰亚胺[42]
Scheme 29 Pd(xantphos)Cl2-catalyzed aminocarbonylation of alkynes to succinimides[42]
图式30 以空气为氧化剂的钯催化炔烃双羰化胺化反应[43]
Scheme 30 Palladium catalyzed oxidative carbonylation of alkynes with air as oxidant[43]
图式31 2-吡啶基甲基甲酸酯作为羰源的炔烃羰化酯化反[48]
Scheme 31 Alkoxycarbonylation of alkynes using 2-pyridylmethyl formate as the carbon monoxide source[48]
图式32 甲酸苯酯作为羰源的炔烃羰化酯化反应[49]
Scheme 32 Palladium-catalyzed alkoxycarbonylation of diphenylacetylene using phenyl formate as the carbon monoxide source[49]
图式33 甲酸作为羰源的钯催化烯烃羰化酯化反应[50]
Scheme 33 Palladium-catalyzed hydrocarboxylation of alkynes using formic acid as CO surrogate[50]
图式34 甲酸作为羰源的镍催化烯烃羰化酯化反应[51,52]
Scheme 34 Nickel-catalyzed hydrocarboxylation of alkynes using formic acid as CO surrogate[51,52]
图式35 甲酸作为羰源的镍催化烯烃羰化酯化反应[53]
Scheme 35 Pd-catalyzed oxidative aminocarbonylation of alkynes of alkynes using Mo(CO)6 as CO surrogate[53]
[1]
Kalck P, Urrutigoïty M. Inorganica Chimica Acta, 2015, 431: 110.
[2]
Mu Q C, Nie Y X, Bai X F, Chen J, Yang L, Xu Z, Li L, Xia C G, Xu L W. Chem. Sci., 2019, 10(40): 9292.

doi: 10.1039/c9sc03081f     URL     pmid: 32055315
[3]
Bai X F, Mu Q C, Xu Z, Yang K F, Li L, Zheng Z J, Xia C G, Xu L W. ACS Catal., 2019, 9(2): 1431.
[4]
Cao J, Zheng Z J, Xu Z, Xu L W. Coord. Chem. Rev., 2017, 336: 43.
[5]
Johnson J R, Cuny G D, Buchwald S L. Angew. Chem. Int. Ed., 1995, 34: 1760.
[6]
Ishii Y, Miyashita K, Kamita K, Hidai M. J. Am. Chem. Soc., 1997, 119: 6448.
[7]
Fang X J, Zhang M, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2013, 52(17): 4645.
[8]
Kiss G. Chem. Rev., 2001, 101(11): 3435.

doi: 10.1021/cr010328q     URL     pmid: 11840990
[9]
Wu X F, Fang X J, Wu L P, Jackstell R, Neumann H, Beller M. Acc. Chem. Res., 2014, 47(4): 1041.

URL     pmid: 24564478
[10]
Drent E, Arnoldy P, Budzelaar P H M. J. Organomet. Chem., 1993, 455(1/2): 247.
[11]
Reetz M T, Demuth R, Goddard R. Tetrahedron Lett., 1998, 39(39): 7089.
[12]
Scrivanti A, Beghetto V, Campagna E, Matteoli U. J. Mol. Catal. A: Chem., 2001, 168(1/2): 75.
[13]
Green M J, Cavell K J, Edwards P G, Tooze R P, Skelton B W, White A H. Dalton Trans., 2004,(20): 3251.
[14]
Shuttleworth T A, Miles-Hobbs A M, Pringle P G, Sparkes H A. Dalton Trans., 2017, 46(1): 125.

URL     pmid: 27922644
[15]
Qi H M, Huang Z J, Wang M L, Yang P J, Du C X, Chen S W, Li Y H. J. Catal., 2018, 363: 63.
[16]
Yang D, Liu L, Wang D L, Lu Y, Zhao X L, Liu Y. J. Catal., 2019, 371: 236.
[17]
Akao M, Sugawara S, Amino K, Inoue Y. J. Mol. Catal. A: Chem., 2000, 157(1/2): 117.
[18]
Núñez Magro A A, Robb L M, Pogorzelec P J, Slawin A M Z, Eastham G R, Cole-Hamilton D J. Chem. Sci., 2010, 1(6): 723.
[19]
El Ali B, Tijani J, El-Ghanam A M. J. Mol. Catal. A: Chem., 2002, 187(1): 17.
[20]
El Ali B, Tijani J. Appl. Organometal. Chem., 2003, 17(12): 921.
[21]
Sha F, Alper H. ACS Catal., 2017, 7(3): 2220.
[22]
Li Y, Alper H, Yu Z K. Org. Lett., 2006, 8(23): 5199.

URL     pmid: 17078677
[23]
Wang D L, Guo W D, Liu L, Zhou Q, Liang W Y, Lu Y, Liu Y. Catal. Sci. Technol., 2019, 9: 1334.
[24]
Gao B, Huang H M. Org. Lett., 2017, 19(22): 6260.

URL     pmid: 29111748
[25]
Driller K M, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2011, 50(2): 537.
[26]
Huang Z, Dong Y N, Li Y D, Makha M, Li Y H. ChemCatChem, 2019, 11: 5236.
[27]
Ji X L, Gao B, Zhou X B, Liu Z J, Huang H M. J. Org. Chem., 2018, 83(17): 10134.

URL     pmid: 29952205
[28]
Wang D L, Guo W D, Zhou Q, Liu L, Lu Y, Liu Y. ChemCatChem, 2018, 10(19): 4264.
[29]
Jin X, Meng K, Zhang G, Liu M, Song Y, Song Z, Yang C. Green Chem., 2021, 23(1): 51.
[30]
Sarkar B R, Chaudhari R V. Catal. Surv. from Asia, 2005, 9(3): 193.
[31]
Tang C M, Zeng Y, Cao P, Yang X G, Wang G Y. Catal. Lett., 2009, 129(1/2): 189.
[32]
Tang C M, Zeng Y, Yang X G, Lei Y C, Wang G Y. J. Mol. Catal. A: Chem., 2009, 314(1/2): 15.
[33]
Williams D B G, Shaw M L, Hughes T. Organometallics, 2011, 30(18): 4968.
[34]
Yang D, Liu H, Liu L, Guo W D, Lu Y, Liu Y. Green Chem., 2019, 21(19): 5336.
[35]
Liu J W, Dong K W, Franke R, Neumann H, Jackstell R, Beller M. J. Am. Chem. Soc., 2018, 140(32): 10282.

URL     pmid: 30032618
[36]
Yang D, Liu H, Wang D L, Luo Z J, Lu Y, Xia F, Liu Y. Green Chem., 2018, 20(11): 2588.
[37]
Guo W D, Liu L, Yang S Q, Chen X C, Lu Y, Vo-Thanh G, Liu Y. ChemCatChem, 2020, 12(5): 1376.
[38]
Inoue S, Yokota K, Tatamidani H, Fukumoto Y, Chatani N. Org. Lett., 2006, 8(12): 2519.

URL     pmid: 16737303
[39]
Abell A D, Oldham M D. J. Org. Chem., 1997, 62(5): 1509.
[40]
Reddy P Y, Kondo S, Toru T, Ueno Y. J. Org. Chem., 1997, 62(8): 2652.

URL     pmid: 11671615
[41]
Driller K M, Klein H, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2009, 48(33): 6041.
[42]
Liu H Z, Lau G P S, Dyson P J. J. Org. Chem., 2015, 80(1): 386.

URL     pmid: 25418524
[43]
Yang J, Liu J W, Jackstell R, Beller M. Chem. Commun., 2018, 54(76): 10710.
[44]
Sayago F J, Laborda P, Calaza M I, JimÉnez A I, Cativiela C. Eur. J. Org. Chem., 2011, 2011(11): 2011.
[45]
Wu X S, Zhao Y, Ge H B. J. Am. Chem. Soc., 2015, 137(15): 4924.

URL     pmid: 25815529
[46]
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan K V, Das P. Org. Biomol. Chem., 2019, 17(21): 5212.

URL     pmid: 31080990
[47]
Dai J, Ren W L, Wang H N., Shi Y N. Org. Biomol. Chem., 2015, 13: 8429.

URL     pmid: 26186060
[48]
Na Y, Ko S, Hwang L K, Chang S. Tetrahedron Lett., 2003, 44(24): 4475.
[49]
Katafuchi Y, Fujihara T, Iwai T, Jun T R, Tsuji Y. Adv. Synth. Catal., 2011, 353(2/3): 475.
[50]
Hou J, Xie J H, Zhou Q L. Angew. Chem. Int. Ed., 2015, 54: 6302.
[51]
Hou J, Yuan M L, Xie J H, Zhou Q L. Green Chem., 2016, 18(10): 2981.
[52]
Fu M C, Shang R, Cheng W M, Fu Y. ACS Catal., 2016, 6(4): 2501.
[53]
Nagarsenkar A, Prajapti S K, Guggilapu S D, Nagendra Babu B. Org. Lett., 2015, 17(18): 4592.

URL     pmid: 26332943
[1] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[2] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[3] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[4] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[5] 袁梦娅, 陈孝云*, 林生岭*. 功能化烯胺的合成[J]. 化学进展, 2018, 30(8): 1082-1096.
[6] 孔令斌, 严胜骄*, 林军*. 杂环烯酮缩胺:构筑分子多样性稠杂环化合物的合成先导分子[J]. 化学进展, 2018, 30(5): 639-657.
[7] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[8] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[9] 赵艳, 郭彩红, 武海顺. 几类过渡金属配合物催化的烯烃硅氢化反应机理[J]. 化学进展, 2014, 26(0203): 345-357.
[10] 尤洪星, 王永勇, 王雪珠, 刘晔. 过渡金属配合物功能化离子液体的合成及其在均相催化中的应用[J]. 化学进展, 2013, 25(10): 1656-1666.
[11] 刘蕾, 刘劲刚*. 仿生模拟催化在新能源与CO2光催化还原方面的研究及应用[J]. 化学进展, 2013, 25(04): 563-576.
[12] 周婵, 许家喜. 非对称环硫乙烷的区域选择性亲核开环反应[J]. 化学进展, 2012, 24(0203): 338-347.
[13] 周婵, 许家喜. 非对称环氧乙烷的区域选择性亲核开环反应[J]. 化学进展, 2011, 23(01): 165-180.
[14] 苑嗣纯 陈海波 王惠川. 联三吡啶配体组装及其金属络合物性能*[J]. 化学进展, 2009, 21(10): 2132-2152.
[15] 柴凤兰,王向宇,陶京朝. 手性席夫碱配合物用于催化不对称环氧化*[J]. 化学进展, 2008, 20(0203): 300-311.