English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 563-576 DOI: 10.7536/PC121048 前一篇   后一篇

• 模拟酶 •

仿生模拟催化在新能源与CO2光催化还原方面的研究及应用

刘蕾, 刘劲刚*   

  1. 华东理工大学化学系 上海 200237
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 刘劲刚 E-mail:liujingang@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21271072)资助

Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction

Liu Lei, Liu Jingang*   

  1. Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

人工光合成是受到植物光合作用启发而兴起的前沿科研领域,对于新型能源的探索具有重要的研究价值。本文首先从植物光合作用的原理和关键化学过程出发,介绍了人工光合成体系的构建原则与方法,着重阐述了过渡金属配合物光催化剂在人工光合成各半反应(水的光催化氧化分解与CO2的还原转换)中的应用。其次,分析整理了近期国内外重点研究的过渡金属配合物光催化剂的种类,评价了各类过渡金属配合物光催化剂的结构特征及由其组成的不同光催化体系的特点和催化性能的差别,讨论了部分光催化剂的催化机理及优化其催化性能的方法。最后,展望了过渡金属配合物光催化剂在人工光合成领域的研究前景及发展方向。

Inspired by natural photosynthesis, artificial photosynthesis using solar energy and abundant natural resources, H2O and CO2, to produce renewable energy fuels has recently been received considerable attentions. This review focuses on recent developments in construction of artificial photosynthesis systems. Special attention has been paid to the various kinds of transition metal complexes as photocatalysts employed in water oxidation as well as in CO2 photo-reduction reactions, the semi-reactions of artificial photosynthesis. The performances of various photocatalytic systems together with their related photocatalytic reaction mechanisms have been summarized and compared. The challenges of current studies and prospects for future development in artificial photosynthesis have also been suggested.

Contents
1 Introduction
2 Principles of natural photosynthesis and constr-uction of artificial photosynthesis
3 Photocatalysts for water splitting
3.1 Proton reduction for H2 evolution
3.2 Water oxidation for O2 evolution
4 Photocatalytic conversion of CO2
4.1 Mononuclear photocatalysts
4.2 Supermolecular photocatalysts
5 Conclusion

中图分类号: 

()

[1] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[2] Halmann M. Nature, 1978, 275: 115-116
[3] Kubacka A, Fernandez-Garcia M, Colon G. Chem. Rev., 2012, 112: 1555-1614
[4] Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4: 1259-1278
[5] Frischmann P D, Mahata K, W黵thner F. Chem. Soc. Rev., 2013, 42: 1847-1870
[6] Balzani V, Credi A, Venturi M. Curr. Opin. Chem. Biol., 1997, 1: 506-513
[7] Dau H, Zaharieva I. Acc. Chem. Res., 2009, 42: 1861-1870
[8] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011, 50: 7238-7266
[9] Esswein A J, Nocera D G. Chem. Rev., 2007, 107: 4022-4047
[10] Dempsey J L, Brunschwig B S, Winkler J R, Gray H B. Acc. Chem. Res., 2009, 42: 1995-2004
[11] Concepcion J J, Jurss J W, Brennaman M K, Hoertz P G, Patrocinio A O T, Iha N Y M, Templeton J L, Meyer T J. Acc. Chem. Res., 2009, 42: 1954-1965
[12] Kilgore U J, Roberts J A S, Pool D H, Appel A M, Stewart M P, DuBois M R, Dougherty W G, Kassel W S, Bullock R M, DuBois D L. J. Am. Chem. Soc., 2011, 133: 5861-5872
[13] Yin Q, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I, Hill C L. Science, 2010, 328: 342-345
[14] Loll B, Kern J, Saenger W, Zouni A, J. Biesiadka. Nature, 2005, 438: 1040-1044
[15] Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473: 55-60
[16] Watkinson M, Whiting A, McAuliffe C A. J. Chem. Soc. Chem. Commun., 1994, 2141-2142
[17] Limburg J, Vrettos J S, Liable-Sands L M, Rheingold A L, Crabtree R H, Brudvig G W. Science, 1999, 283: 1524-1527
[18] Yagi M, Narita K. J. Am. Chem. Soc., 2004, 126: 8084-8085
[19] Poulsen A K, Rompel A, McKenzie C J. Angew. Chem. Int. Ed., 2005, 44: 6916-6920
[20] Beckmann K, Uchtenhagen H, Berggren G, Anderlund M F, Thapper A, Messinger J, Styring S, Kurz P. Energy Environ. Sci., 2008, 1: 668-676
[21] Karlsson E A, Lee B L, Åkermark T, Johnston E V, Kärkäs M D, Sun J L, Hansson O, Bäckvall J E, Åkermark B. Angew. Chem. Int. Ed., 2011, 50: 11715-11718
[22] R黣ttinger W, Yagi M, Wolf K, Bernasek S, Dismukes G C. J. Am. Chem. Soc., 2000, 122: 10353-10357
[23] Yagi M, Wolf K V, Baesjou P J, Bernasek S L, Dismukes G C. Angew. Chem. Int. Ed., 2001, 40: 2925-2928
[24] Hocking R K, Brimblecombe R, Chang L Y, Singh A, Cheah M H, Glover C, Casey W H, Spiccia L. Nat. Chem., 2011, 3: 461-466
[25] Naruta Y, Sasayama M, Sasaki T. Angew. Chem. Int. Ed., 1994, 33: 1839-1841
[26] Gao Y, Åkermark T, Liu J, Sun L, Åkermark B. J. Am. Chem. Soc., 2009, 131: 8726-8727
[27] Gersten S W, Samuels G J, Meyer T J. J. Am. Chem. Soc., 1982, 104: 4029-4030
[28] Hurst J K. Coord. Chem. Rev., 2005, 249: 313-328
[29] Huynh M H V, Meyer T J. Chem. Rev., 2007, 107: 5004-5064
[30] Duan L, Tong L, Xu Y, Sun L. Energy Environ. Sci., 2011, 4: 3296-3313
[31] Sens C, Romero I, Rodriguez M, Llobet A, Parella T, Benet-Buchholz J. J. Am. Chem. Soc., 2004, 126: 7798-7799
[32] Romain S, Vigara L, Llobet A. Acc. Chem. Res., 2009, 42: 1944-1953
[33] Zong R, Thummel R P. J. Am. Chem. Soc., 2005, 127: 12802-12803
[34] Deng Z, Tseng H W, Zong R, Wang D, Thummel R. Inorg. Chem., 2008, 47: 1835-1848
[35] Xu Y, Åkermark T R, Gyollai V, Zou D, Eriksson L, Duan L, Zhang R, Åkermark B R, Sun L. Inorg. Chem., 2009, 48: 2717-2719
[36] Xu Y, Fischer A, Duan L, Tong L, Gabrielsson E, Åkermark B, Sun L. Angew. Chem. Int. Ed., 2010, 49: 8934-8937
[37] Xu Y H, Duan L L, Tong L P, Åkermark B, Sun L C. Chem. Commun., 2010, 46: 6506-6508
[38] Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. ChemCatChem, 2010, 2: 724-761
[39] Liu X, Wang F Y. Coord. Chem. Rev., 2012, 256: 1115-1136
[40] Tseng H W, Zong R, Muckerman J T, Thummel R P. Inorg. Chem., 2008, 47: 11763-11773
[41] Duan L, Fischer A, Xu Y, Sun L. J. Am. Chem. Soc., 2009, 131: 10397-10399
[42] Duan L L, Xu Y H, Tong L P, Sun L C. ChemSusChem, 2011, 4: 238-244
[43] Duan L, Xu Y H, Gorlov M, Tong L P, Andersson S, Sun L. Chem. Eur. J., 2010, 16: 4659-4668
[44] Tong L, Duan L, Xu Y, Privalov T, Sun L. Angew. Chem. Int. Ed., 2011, 50: 445-449
[45] Duan L L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L C. Nat. Chem., 2012, 4: 418-423
[46] Nyhl閚 J, Duan L, Åkermark B, Sun L, Privalov T. Angew. Chem. Int. Ed., 2010, 49: 1773-1777
[47] Chen Z F, Concepcion J J, Hu X Q, Yang W T, Hoertz P G, Meyer T J. Proc. Nat. Acad. Sci. USA, 2010, 107: 7225-7229
[48] Boyer J L, Polyansky D E, Szalda D J, Zong R F, Thummel R P, Fujita E. Angew. Chem. Int. Ed., 2011, 50: 12600-12604
[49] Kaveevivitchai N, Chitta R, Zong R F, El Ojaimi M, Thummel R P. J. Am. Chem. Soc., 2012, 134: 10721-10724
[50] McDaniel N D, Coughlin F J, Tinker L L, Bernhard S. J. Am. Chem. Soc., 2008, 130: 210-217
[51] Blakemore J D, Schley N D, Balcells D, Hull J F, Olack G W, Incarvito C D, Eisenstein O, Brudvig G W, Crabtree R H. J. Am. Chem. Soc., 2010, 132: 16017-16029
[52] Lalrempuia R, McDaniel N D, Muller-Bunz H, Bernhard S, Albrecht M. Angew. Chem. Int. Ed., 2010, 49: 9765-9768
[53] Hetterscheid D G H, Reek J N H. Chem. Commun., 2011, 47: 2712-2714
[54] Grotjahn D B, Brown D B, Martin J K, Marelius D C, Abadjian M C, Tran H N, Kalyuzhny G, Vecchio K S, Specht Z G, Cortes-Llamas S A, Miranda-Soto V, van Niekerk C, Moore C E, Rheingold A L. J. Am. Chem. Soc., 2011, 133: 19024-19027
[55] Ellis W C, McDaniel N D, Bernhard S, Collins T J. J. Am. Chem. Soc., 2010, 132: 10990-10991
[56] Fillol J L, Codola Z, Garcia-Bosch I, Gomez L, Pla J J, Costas M. Nat. Chem., 2011, 3: 807-813
[57] Singh R N, Mishra D, Anindita, Sinha A S K, Singh A. Electrochem. Commun., 2007, 9: 1369-1373
[58] Kanan M W, Nocera D G. Science, 2008, 321: 1072-1075
[59] Risch M, Khare V, Zaharieva I, Gerencser L, Chernev P, Dau H. J. Am. Chem. Soc., 2009, 131: 6936-6937
[60] Kanan M W, Yano J, Surendranath Y, Dinca M, Yachandra V K, Nocera D G. J. Am. Chem. Soc., 2010, 132: 13692-13701
[61] Huang Z Q, Luo Z, Geletii Y V, Vickers J W, Yin Q S, Wu D, Hou Y, Ding Y, Song J, Musaev D G, Hill C L, Lian T Q. J. Am. Chem. Soc., 2011, 133: 2068-2071
[62] Takeda H, Ishitani O. Coord. Chem. Rev., 2010, 254: 346-354
[63] Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009, 42: 1983-1994
[64] Schneider J, Jia H F, Muckerman J T, Fujita E. Chem. Soc. Rev., 2012, 41: 2036-2051
[65] Yui T, Tamaki Y, Sekizawa K, Ishitani O. Top. Curr. Chem., 2011, 303: 151-184
[66] Hawecker J, Lehn J M, Ziessel R. J. Chem. Soc. Chem. Commun., 1983, 536-538
[67] Kurz P, Probst B, Spingler B, Alberto R J. Inorg. Chem., 2006, 2966-2974
[68] Koike K, Okoshi N, Hori H, Takeuchi K, Ishitani O, Tsubaki H, Clark I P, George M W, Johnson F P A, Turner J J, J. Am. Chem. Soc., 2002, 125: 11448-11455
[69] Hori H, Johnson F P A, Koike K, Ishitani O, Ibusuki T. J. Photochem. Photobiol. A, 1996, 96: 171-174
[70] Hori H, Ishihara J, Koike K, Takeuchi K, Ibusuki T, Ishitani O. J. Photochem. Photobiol. Chem., 1999, 120: 119-124
[71] Takeda H, Koike K, Inoue H, Ishitani O. J. Am. Chem. Soc., 2008, 130: 2023-2031
[72] Hayashi Y, Kita S, Brunschwig B S, Fujita E. J. Am. Chem. Soc., 2003, 125: 11976-11987
[73] Gibson D H, Yin X L. J. Am. Chem. Soc., 1998, 120: 11200-11201
[74] Agarwal J, Johnson R P, Li G H. J. Phys. Chem. A, 2011, 115: 2877-2881
[75] Agarwal J, Fujita E, Schaefer H F, Muckerman J T. J. Am. Chem. Soc., 2012, 134: 5180-5186
[76] Koike K, Hori H, Ishizuka M, Westwell J R, Takeuchi K, Ibusuki T, Enjouji K, Konno H, Sakamoto K, Ishitani O. Organometallics, 1997, 16: 5724-5729
[77] Tsubaki H, Sugawara A, Takeda H, Gholamkhass B, Koike K, Ishitani O. Res. Chem. Intermed., 2007, 33: 37-48
[78] Sato S, Sekine A, Ohashi Y, Ishitani O. Inorg. Chem., 2007, 46: 3531-3540
[79] Grodkowski J, Behar D, Neta P, Hambright P. J. Phys. Chem. A, 1997, 101: 248-254
[80] Behar D, Dhanasekaran T, Neta P, Hosten C M, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A, 1998, 102: 2870-2877
[81] Ishida H, Terada T, Tanaka K, Tanaka T. Inorg. Chem., 1990, 29: 905-911
[82] Lehn J M, Ziessel R. J. Organomet. Chem., 1990, 382: 157-173
[83] Fisher B, Eisenberg R. J. Am. Chem. Soc., 1980, 102: 7361-7363
[84] Hu X, Brunschwig B S, Peters J C. J. Am. Chem. Soc., 2007, 129: 8988-8998
[85] Tinnemans A H A, Koster T P M, Thewissen D, Mackor A. Recl. Trav. Chim. Pays-Bas, 1984, 103: 288-295
[86] Craig C A, Spreer L O, Otvos J W, Calvin M. J. Phys. Chem., 1990, 94: 7957-7960
[87] Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S. J. Am. Chem. Soc., 1993, 115: 601-609
[88] Matsuoka S, Kohzuki T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S. J. Phys. Chem., 1992, 96: 4437-4442
[89] Ogata T, Yanagida S, Brunschwig B S, Fujita E. J. Am. Chem. Soc., 1995, 117: 6708-6716
[90] Schulz M, Karnahl M, Schwalbe M, Vos J G. Coord. Chem. Rev., 2012, 256: 1682-1705
[91] Amao Y. ChemCatChem, 2011, 3: 458-474
[92] Kimura E, Wada S, Shionoya M, Takahashi T, Litaka Y. J. Chem. Soc. Chem. Commun., 1990, 397-398
[93] Kimura E, Bu X, Shionoya M, Wada S, Maruyama S. Inorg. Chem., 1992, 31: 4542-4546
[94] Kimura E, Wada S, Shionoya M, Okazaki Y. Inorg. Chem., 1994, 33: 770-778
[95] Komatsuzaki N, Himeda Y, Hirose T, Sugihara H, Kasuga K. Bull. Chem. Soc. Jpn., 1999, 72: 725-731
[96] Lehn J M, Ziessel R. Proc. Natl. Acad. Sci. USA, 1982, 79: 701-704
[97] Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O. Inorg. Chem., 2005, 44: 2326-2336
[98] Bian Z Y, Chi S M, Li L, Fu W F. Dalton Trans., 2010, 39: 7884-7887
[99] Sato S, Koike K, Inoue H, Ishitani O. Photochem. Photobiol. Sci., 2007, 6: 454-461
[100] Koike K, Naito S, Sato S, Tamaki Y, Ishitani O. J. Photochem. Photobiol. A, 2009, 207: 109-114
[101] Tamaki Y, Watanabe K, Koike K, Inoue H, Morimoto T, Ishitani O. Faraday Discuss., 2012, 155: 115-127
[102] Bian Z Y, Sumi K, Furue M, Sato S, Koike K, Ishitani O. Dalton Trans., 2009, 38: 983-993
[103] Tamaki Y, Morimoto T, Koike K, Ishitani O. Proc. Natl. Acad. Sci. USA, 2012, 109: 15673-15678
[104] Kiyosawa K, Shiraishi N, Shimada T, Masui D, Tachibana H, Takagi S, Ishitani O, Tryk D A, Inoue H. J. Phys. Chem. C, 2009, 113: 11667-11673
[105] Windle C D, Campian M V, Duhme-Klair A K, Gibson E A, Perutz R N, Schneider J. Chem. Commun., 2012, 48: 8189-8191

[1] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[2] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[3] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[4] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[5] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[6] 张凌峰, 胡忠攀, 刘歆颖, 袁忠勇. TiO2基光解水析氢非贵金属共催化剂的研究[J]. 化学进展, 2016, 28(10): 1474-1488.
[7] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[8] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[9] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[10] 赵艳, 郭彩红, 武海顺. 几类过渡金属配合物催化的烯烃硅氢化反应机理[J]. 化学进展, 2014, 26(0203): 345-357.
[11] 尤洪星, 王永勇, 王雪珠, 刘晔. 过渡金属配合物功能化离子液体的合成及其在均相催化中的应用[J]. 化学进展, 2013, 25(10): 1656-1666.
[12] 李晓慧, 范同祥. 人工光合作用[J]. 化学进展, 2011, 23(9): 1841-1853.
[13] 陈兆旭 黄玉成 李哲 康国俊. 理论化学与新能源*[J]. 化学进展, 2009, 21(11): 2271-2284.
[14] 苑嗣纯 陈海波 王惠川. 联三吡啶配体组装及其金属络合物性能*[J]. 化学进展, 2009, 21(10): 2132-2152.
[15] 郎贤军,路瑞玲,李臻,夏春谷. 多金属氧酸盐催化的液相氧化反应*[J]. 化学进展, 2008, 20(04): 469-482.