English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 345-357 DOI: 10.7536/PC130745 前一篇   后一篇

• 综述与评论 •

几类过渡金属配合物催化的烯烃硅氢化反应机理

赵艳, 郭彩红*, 武海顺*   

  1. 山西师范大学化学与材料科学学院 临汾 041004
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 郭彩红,e-mail:sxgch2006@163.com;武海顺,e-mail:wuhs@dns.sxnu.edu.cn E-mail:sxgch2006@163.com;wuhs@dns.sxnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21203115)资助

Reaction Mechanisms of Olefin Hydrosilylation Catalyzed by Several Transition Metal Complexes

Zhao Yan, Guo Caihong*, Wu Haishun*   

  1. School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21203115)

有机硅材料是一种功能独特,性能优异的化工新材料,广泛应用于工业、农业、医药等各大领域。其种类繁多,如硅油、硅橡胶、硅树脂、硅烷等,它们的主要成分均为有机硅化合物,且均非自然界中存在的天然物质,需人工合成。目前,烯烃硅氢化反应是制备有机硅化合物的重要方法之一。该方法简单而直接,且具有原子经济性,备受人们的亲睐。这类反应需要在催化剂的作用下才能发生,因而过渡金属催化剂的设计和机理的研究一直为实验和理论工作者所关注。本文综述了近年来过渡金属配合物催化剂及其催化烯烃硅氢化反应的机理。重点介绍了Pt、Rh、Ru、Zr等过渡金属配合物的不同催化作用机制,希望为以后的研究提供思路和启发。

Silicon-based products such as oil, grease, rubbers, resin, etc. are widely used in the industrial, agricultural, medicinal, and other areas. The above-mentioned are not naturally substances, and organosilicon compounds as the effective component are manufactured artificially. The hydrosilylation of olefins is one of the most straightforward and atom-economical methods for the generation of versatile silicon-containing intermediates in silicon chemistry. Also the catalysts are very necessary. Transition metal complexes are confirmed to have high activity and selectivity. The Pt-based complexes, such as Karstedts and Speiers catalysts, are most widely used in the past. Over the past years, the transition-metal-based catalysts such as Pd, Rh, Ru, Zr, etc. have been reported to be efficient in the alkene hydrosilylation reaction. In this paper, we mainly introduce the advances in new reaction mechanisms of olefin hydrosilylation catalyzed by several transition metal complexes. In particular, we highlight the new mechanistic pathways from the experimental studies and quantum mechanics calculations. Not only a summary of previous works is given, but also some ideas and inspirations are provided for future research.

Contents
1 Introduction
2 Mechanisms of olefin hydrosilylation catalyzed by late transition metal complexes
2.1 Platinum complexes catalysts
2.2 Reaction mechanism catalyzed by platinum complexes
2.3 Ruthenium complexes catalysts and reaction mechanisms of olefin hydrosilylation
3 Mechanisms of olefin hydrosilylation catalyzed by middle transition metal complexes
3.1 Family of chromium (Cr、Mo、W) complexes catalysts and reaction mechanism
3.2 Family of manganese (Mn、Tc、Re) complexes catalysts and reaction mechanism
4 The mechanism of olefin hydrosilylation catalyzed by early transition metal (Zr、Ti、Hf) complexes
5 Conclusion and outlook

中图分类号: 

()

[1] 杜作栋(Du Z D), 陈剑华(Chen J H), 贝小来(Bei X L). 有机硅化学(Organosilicon Chemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 1990. 40: 102.
[2] Sommer L H, Pietrusza E W, Whitmore F C. J. Am. Chem. Soc., 1947, 69(1): 188.
[3] El-Abbady A M, Anderson L C. J. Am. Chem. Soc., 1958, 80(7): 1737.
[4] Burkhard C A, Krieble R H. J. Am. Chem. Soc., 1947, 69(11): 2687.
[5] Speier J L, Webster J A, Barnes G H. J. Am. Chem. Soc., 1957, 79(4): 974.
[6] Johnson C R, Raheja R K. J. Org. Chem., 1994, 59(9): 2287.
[7] Watanabe H, Aoki M, Sakurai N, Watanabe K, Nagai Y. J. Organomet. Chem., 1978, 160(2): C1.
[8] Skvortsov N K, Spevak V N, Pashnova L V. Russ. J. Gen. Chem., 1997, 67(3): 487.
[9] 黄光佛(Huang G F), 李盛彪(Li S B), 孙争光(Sun Z G), 黄世强(Huang S Q). 分子催化(Journal of Molecular Catalysis), 2000, 14(6): 409.
[10] 黄锁义(Huang S Y), 田华(Tian H), 郝振文(Hao Z W), 王麟生(Wang L S). 化工技术与开发(Technology & Development of Chemical Industry), 2003, 32(6): 33.
[11] 管雁(Guan Y), 吴清州(Wu Q Z), 陈关喜(Chen G X), 冯建跃(Feng J Y), 莫卫民(Mo W M). 化学研究(Chemical Research), 2010, 21(2): 100.
[12] 柯颖芬(Ke Y F). 浙江大学硕士学位论文(Master Dissertation of Zhejiang University), 2006.
[13] Chalk A J, Harrod J F. J. Am. Chem. Soc., 1965, 87(1): 16.
[14] Schuerman J A, Fronczek F R, Selbin J. J. Am. Chem. Soc., 1986, 108(2): 336.
[15] Seitz F, Wrighton M S. Angew. Chem. Int. Ed. Engl., 1988, 27(2): 289.
[16] Bergens S H, Noheda P, Whelan J, Bosnich B. J. Am. Chem. Soc., 1992, 114(6): 2128.
[17] Brookhart M, Grant B E. J. Am. Chem. Soc., 1993, 115(6): 2151.
[18] LaPointe A M, Rix F C, Brookhart M. J. Am. Chem. Soc., 1997, 119(5): 906.
[19] Sakaki S, Mizoe N, Sugimoto M. Organometallics, 1998, 17(12): 2510.
[20] Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometallics, 2002, 21(18): 3788.
[21] Giorgi G, Angelis F D, Re N, Sgamellotti A. J. Mol. Struc. THEOCHEM, 2003, 623(1/3): 277.
[22] Corey J Y, Braddock-Wilking J. Chem. Rev., 1999, 99(1): 175.
[23] Brost R D, Bruce G C, Joslin F L, Stobart S R. Organometallics, 1997, 16(26): 5669.
[24] Yamashita H, Tanaka M, Goto M. Organometallics, 1997, 16(21): 4696.
[25] Roy A K, Taylor R B. J. Am. Chem. Soc., 2002, 124(32): 9510.
[26] Stein J, Lewis L N, Gao Y, Scott R A. J. Am. Chem. Soc., 1999, 121(15): 3693.
[27] Steffanut P, Osborn J A, DeCian A, Fisher J. Chem. Eur. J., 1998, 4(10): 2008.
[28] Caseri W, Pregosin P S. Organometallics, 1988, 7(6): 1373.
[29] Caseri W, Pregosin P S. J. Organomet. Chem., 1988, 356(2): 259.
[30] Jagadeesh M N, Thiel W, Köhler J, Fehn A. Organometallics, 2002, 21(10): 2076.
[31] Tsipis C A, Kefalidis C E. J. Organomet. Chem., 2007, 692(23): 5245.
[32] Lewis L N, Uriarte R J. Organometallics, 1990, 9(3): 621.
[33] Lewis L N, Lewis N. J. Am. Chem. Soc., 1986, 108(23): 7228.
[34] Lewis L N. J. Am. Chem. Soc., 1990, 112(16): 5998.
[35] Marciniec B, Maciejewski H, Duczmal W, Fiedorow R, Kityński. Appl. Organomet. Chem., 2003, 17: 127.
[36] Gigler P, Drees M, Riener K, Bechlars B, Herrmann W A. J. Catal., 2012, 295: 1.
[37] Glaser P B, Tilley T D. J. Am. Chem. Soc., 2003, 125(45): 13640.
[38] Böhme U. J. Organomet. Chem., 2006, 691(21): 4400.
[39] Beddie C, Hall M B. J. Phys. Chem. A, 2006, 110(4): 1416.
[40] Beddie C, Hall M B. J. Am. Chem. Soc., 2004, 126(42): 13564.
[41] Chung L W. PhD thesis of the Hong Kong University of Science ang Technology, 2006.
[42] Tuttle T, Wang D, Thiel W, Köhler J, Hofmann M, Weis J. Organometallics, 2006, 25(19): 4504.
[43] Tuttle T, Wang D, Thiel W, Köhler J, Hofmann M, Weis J. J. Organomet. Chem., 2007, 692(11): 2282.
[44] Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[45] Abdelqader W, Özkar S, Peynircioglu N B Z. Naturforsch, 1993, 48B: 539.
[46] Abdelqader W, Chmielewski D, Grevels F W, Özkar S, Peynircioglu N B. Organometallics, 1996, 15(2): 604.
[47] Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[48] Wrighton M, Hammond G S, Gray H B. J. Organomet. Chem., 1974, 70(2): 283.
[49] Wang I H, Dobson G R. J. Organomet. Chem., 1988, 356(1): 77.
[50] Wang I H, Dobson G R, Jones P R. Organometallics, 1990, 9(9): 2510.
[51] Khalimon A Y, Simionescu R, Nikonov G I. J. Am. Chem. Soc., 2011, 133(18): 7033.
[52] Schmidt T. Tetrahedron Lett., 1994, 35(21): 3513.
[53] Mao Z, Gregg B T, Cutler A R. J. Am. Chem. Soc., 1995, 117(40): 10139.
[54] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1996, 118(42): 10069.
[55] Chung L W, Lee H G, Lin Z, Wu Y. J. Org. Chem., 2006, 71(16): 6000.
[56] Liu L, Bi S, Sun M, Yuan X, Zheng N, Li P. J. Organomet. Chem., 2009, 694(20): 3343.
[57] Kesti M R, Waymouth R M. Organometallics, 1992, 11(3): 1095.
[58] Kesti M R, Abdulrahman M, Waymouth R M. J. Organomet. Chem., 1991, 417(1/2): C12.
[59] Takahashi T, Hasegawa M, Suzuki N, Saburi M, Rousset C J, Fanwick P E, Negishi E. J. Am. Chem. Soc., 1991, 113(22): 8564.
[60] Corey J Y, Zhu X H. Organometallics, 1992, 11(2): 672.
[61] Harrod J F, Yun S S. Organometallics, 1987, 6(7): 1381.
[62] Wu Y D, Chung L W, Zhang X H. Computational Modeling for Homogeneous and Enzymatic Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 285.
[63] Ura Y, Hara R, Takahashi T. Chem. Lett., 1998, 27(3): 195.
[64] Terao J, Torii K, Saito K, Kambe N, Baba A, Sonoda N. Angew. Chem. Int. Ed., 1998, 37(19): 2653.
[65] Sakaki S, Takayama T, Sumimoto M, Sugimoto M. J. Am. Chem. Soc., 2004, 126(10): 3332.
[66] Sakaki S, Takayama T, Sugimoto M. Chem. Lett., 2001, 30(12): 1222.

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.