English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1082-1096 DOI: 10.7536/PC171246 前一篇   后一篇

• 综述 •

功能化烯胺的合成

袁梦娅, 陈孝云*, 林生岭*   

  1. 江苏科技大学环境与化学工程学院 镇江 212003
  • 收稿日期:2017-12-29 修回日期:2018-03-28 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 陈孝云, 林生岭 E-mail:xiaoyun_chen12@163.com;linshl5757@sina.com
  • 基金资助:
    国家自然科学基金项目(No.21602085)和江苏省基础研究计划(自然科学基金)项目(No.BK20160551)资助

Synthesis of the Functionalized Enamine

Mengya Yuan, Xiaoyun Chen*, Shengling Lin*   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2017-12-29 Revised:2018-03-28 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21602085) and the Natural Science Foundation of Jiangsu Province(No.BK20160551).
烯胺作为许多药物的关键结构单元,在有机合成,特别是天然产物的合成和含氮杂环化合物的合成中有很重要的应用。为了更好地发展适用性广的合成新方法,本文综述合成烯胺的最新研究进展。首先总结了传统合成烯胺的相关工作,随后综述了催化合成烯胺的相关工作,包括烯烃的催化胺化和炔烃氢胺化反应,详细介绍了过渡金属(主要是Cu(Ⅰ或Ⅱ)或Pd(0或Ⅱ))催化的Buchwald-Harwig反应中,使用多种取代烯烃(包括卤代烯烃及拟卤代烯烃与烯基硼酸)作为底物的研究进展,同时,对通过C(sp2)—H直接活化来构筑与不同胺相连的C—N键的Aza-Wacker氧化偶合反应也进行了介绍。希望对发展合成烯胺的新方法有所裨益。
Enamines, with one amino group connected with carbon-carbon double bond, are key frameworks of many drugs. They have important applications in organic synthesis, especially in the synthesis of natural products and N-containing heterocycles owing to their unique structures. Therefore, the synthesis of enamines is particularly noticeable. In order to develop novel and applicable methodologies to synthesize enamines, the recent progress in their synthesis has been reviewed herein. Firstly, the related work of conventional synthesis, which include condensation reaction, addition reaction, heterocyclic cracking Curtius rearrangement, Wittig reaction, α, β-elimination of amide, reductive acylation of ketoxime, etc. has been summarized. Then, the catalytic amination of olefins to prepare enamine has been introduced in detail. In transition-metal catalyzed (mainly Cu (Ⅰ or Ⅱ) or Pd (0 or Ⅱ)) Buchwald-Hartwig reaction, the research progress of using various substituted olefins as substrates, including halogenated olefins, pseudohalogenated olefins and alkenyl boronic acid, has been reviewed. The methodology called Aza-Wacker oxidative coupling reaction to synthesize enamine via C (sp2)-H direct activation to construct C-N bond with different amines have also been summarized. Finally, the progress to prepare enamines and their derivatives by hydroamination of alkynes has been introduced here. It is of great significance for the development of the new methodologies to synthesize enamine.
Contents
1 Introduction
2 Synthese of enamine by traditional methods
3 Synthese of enamine from olefins and amines
3.1 Synthese of enamine from substituted olefins and amines
3.2 Synthese of enamine by C-H activation of olefins
4 Synthese of enamine from alkynes and amines
4.1 Synthese of enamine from alkynes and aliphatic amines and its derivatives
4.2 Synthese of enamine from alkynes and aromatic amines
4.3 Synthese of enamine from alkynes and amides and its derivatives
4.4 Synthese of enamine from alkynes and diazo or azide
5 Conclusion

中图分类号: 

()
[1] Courant T, Dagousset G, Masson G. Synthesis, 2015, 47:1799.
[2] Chikhalikar S, Bhawe V, Ghotekar B, Jachak M, Ghagare M. J. Org. Chem., 2011,76:3829.
[3] Gopalaiah K, Kagan H B. Chem. Rev., 2011, 111:4599.
[4] Murugan K, Liu S T. Tetrahedron Lett., 2013, 54:2608.
[5] Strube F, Rath S, Mattay J. Eur. J. Org. Chem., 2011, 2011:4645.
[6] Lian X L, Ren Z H, Wang Y Y, Guan Z H. Org. Lett., 2014, 16:3360.
[7] Yet L. Chem. Rev., 2003, 103:4283.
[8] Tan N H, Zhou J. Chem. Rev., 2006, 106:840.
[9] He G, Wang J, Ma D W. Org. Lett., 2007, 9:1367.
[10] Nicolaou K C, Sun Y P, Guduru R, Banerji B, Chen D Y K. J. Am. Chem. Soc., 2008, 130:3633.
[11] Bernadat G, Masson G. Synlett, 2014, 25:2842.
[12] Kiss L, Cherepanova M, Fülöp F. Tetrahedron, 2015, 71:2049.
[13] Elassar A Z A, El-Khair A A. Tetrahedron, 2003, 59:8463.
[14] Katritzky A R, Fang Y F, Donkor A, Xu J Y. Synthesis, 2000, 2000:2029.
[15] Li M, Guo W S, Wen L R, Yang Y Z. Chin. J. Org. Chem., 2006, 26:1192.
[16] Zheng G, Li Y, Han J, Xiong T, Zhang Q. Nat. Commun., 2015, 6.
[17] Evano G, Gaumont A C, Alayrac C, Wrona I E, Giguere J R, Delacroix O, Bayle A, Jouvin K, Theunissen C, Gatignol J, Silvanus A C. Tetrahedron, 2014, 70:1529.
[18] Kuramochi K, Watanabe H, Kitahara T. Synlett, 2000, 2000:397.
[19] Villa M V J, Targett S M, Barnes J C, Whittingham W G, Marquez R. Org. Lett., 2007, 9:1631.
[20] Dali H, Sugumaran M. Org. Prep. Proced. Int., 1988, 20:191.
[21] Barton D H R, Zard S Z. J. Chem. Soc. Perkin Trans. 1, 1985, 2191.
[22] Murugan K, Huang D W, Chien Y T, Liu S T. Tetrahedron, 2013, 69:268.
[23] Taillefer M, Ma D W. Topics in Organometallic Chemistry. Springer, 2013, 46:5240.
[24] Bolshan Y, Batey R A. Tetrahedron, 2010, 66:5283.
[25] Ogawa T, Kiji T, Hayami K, Suzuki H. Chem. Lett., 1991, 20:1443.
[26] Shen R C, Porco J A. Org. Lett., 2000, 2:1333.
[27] Jiang L, Job G E, Klapars A, Buchwald S L. Org. Lett., 2003, 5:3667.
[28] Dehli J R, Bolm C. Adv. Synth. Catal., 2005, 347:239.
[29] Taillefer M, Ouali A, Renard B, Spindler J F. Chem. Eur. J., 2006, 12:5301.
[30] Mao J C, Hua Q Q, Guo J, Shi D, Ji S J. Synlett, 2008, 2011.
[31] Sperotto E, van Klink G P M, van Koten G, de Vries J G. Dalton Transactions, 2010, 39:10338.
[32] Lam P Y S, Vincent G, Bonne D, Clark C G. Tetrahedron Lett., 2003, 44:4927.
[33] Bolshan Y, Batey R A. Angew. Chem., 2008, 120:2139.
[34] Mo D L, Wink D A, Anderson L L. Org. Lett., 2012, 14:5180.
[35] Willis M C, Brace G N. Tetrahedron Lett., 2002, 43:9085.
[36] Willis M C, Brace G N, Holmes I P. Synthesis, 2005, 2005:3229.
[37] Klapars A, Campos K R, Chen C Y, Volante R P. Org. Lett., 2005, 7:1185.
[38] Brice J L, Meerdink J E, Stahl S S. Org. Lett., 2004, 6:1845.
[39] Bozell J J, Hegedus L S. J. Org. Chem., 1981, 46:2561.
[40] Obora Y, Shimizu Y, Ishii Y. Org. Lett., 2009, 11:5058.
[41] Mizuta Y, Yasuda K, Obora Y. J. Org. Chem., 2013, 78:6332.
[42] Ji X C, Huang H W, Wu W Q, Li X W, Jiang H F. J. Org. Chem., 2013, 78:11155.
[43] Timokhin V I, Anastasi N R, Stahl S S. J. Am. Chem. Soc., 2003, 125:12996.
[44] Timokhin V I, Stahl S S. J. Am. Chem. Soc., 2005, 127:17888.
[45] Brice J L, Harang J E, Timokhin V I, Anastasi N R, Stahl S S. J. Am. Chem. Soc., 2005, 127:2868.
[46] Lee J M, Ahn D S, Jung D Y, Lee J, Do Y, Kim S K, Chang S. J. Am. Chem. Soc., 2006, 128:12954.
[47] Hu H Y, Tian J X, Liu Y, Liu Y, Shi F, Wang X, Kan Y H, Wang C. J. Org. Chem., 2015, 80:2842.
[48] Jiang B, Meng F F, Liang Q J, Xu Y H, Loh T P. Org. Lett., 2017, 19:914.
[49] Song L, Luo S, Cheng J P. Org. Chem. Front., 2016, 3:447.
[50] Ortgies S, Breder A. ACS Catal., 2017, 7:5828.
[51] Deng Z M, Wei J L, Liao L H, Huang H Y, Zhao X D. Org. Lett., 2015, 17:1834.
[52] Pouambeka T W, Zhang G, Zheng G F, Xu G X, Zhang Q, Xiong T, Zhang Q. Org. Chem. Front., 2017, 4:1420.
[53] Liao L H, Guo R, Zhao X D. Angew. Chem. In. Ed., 2017, 56:3201.
[54] Ji X C, Huang H W, Wu W Q, Jiang H F. J. Am. Chem. Soc., 2013, 135:5286.
[55] Ji X C, Huang H W, Xiong W, Huang K, Wu W Q, Jiane H F. J. Org. Chem., 2014, 79:7005.
[56] Chen X Y, Bohmann R A, Wang L, Dong S, Räuber C, Bolm C. Chem. Eur. J., 2015, 21:10330.
[57] Severin R, Doye S. Chem. Soc. Rev., 2007, 36:1407.
[58] Shaffer A R, Schmidt J A R. Organometallics, 2008, 27:1259.
[59] Thorwirth R, Stolle A. Synlett, 2011, 2200.
[60] Yoon H, Kim Y,Lee Y. Org. Biomol. Chem., 2017, 15:790.
[61] Batail N, Dufaud V, Djakovitch L. Tetrahedron Lett., 2011, 52:1916.
[62] Hu D, Liu Y, Wan J P. Tetrahedron, 2015, 71:6094.
[63] Panda N, Mothkuri R. J. Org. Chem., 2012, 77:9407.
[64] Li M R, Yuan H Y, Zhao B Z, Liang F S, Zhang J P. Chem. Commun., 2014, 50:2360.
[65] Brahmchari D, Verma A K, Mehta S. J. Org. Chem., 2018, DOI:10.1021/acs.joc.7b02903.
[66] Manan R S, Kilaru P, Zhao P J. J. Am. Chem. Soc., 2015, 137:6136.
[67] Lee D, Kim S M, Hirao H, Hong S H. Org. Lett., 2017, 19:4734.
[68] Zhu C, Yamane M. Tetrahedron, 2011, 67:4933.
[69] Park S, Yong W S, Kim S, Lee P H. Org. Lett., 2014, 16:4468.
[70] Shin S, Park Y, Kim C E, Son J Y, Lee P H. J. Org. Chem., 2015, 80:5859.
[1] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[2] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[3] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[4] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[5] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[6] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[7] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[8] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[9] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[10] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[11] 袁世芳, 牛春霞, 魏学红, 孙文华. ⅣB金属配合物催化烯烃聚合与共聚[J]. 化学进展, 2016, 28(7): 1070-1075.
[12] 雷朋飞, 张文生, 匡春香, 江玉波. 芳基末端炔的合成[J]. 化学进展, 2016, 28(2/3): 317-327.
[13] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[14] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[15] 蒋坤, 陈应春. 不对称三烯胺催化的发展[J]. 化学进展, 2015, 27(2/3): 137-145.
阅读次数
全文


摘要