English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1745-1752 DOI: 10.7536/PC200635 前一篇   后一篇

• •

钯催化有机卤化物与烷基炔的Heck型反应

朱成浩1, 张俊良1,**()   

  1. 1. 复旦大学化学系 上海 200438
  • 收稿日期:2020-06-10 修回日期:2020-07-04 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 张俊良
  • 作者简介:

    张俊良

    1997年天津大学本科,2002年中国科学院上海有机化学研究所博士,2003~2006年科隆大学和芝加哥大学博士后,2006年12月华东师范大学教授,2017年10月复旦大学教授。主要研究兴趣包括发展共轭烯炔和小环的有机合成方法学以及基于新型手性配体Sadphos的不对称催化,发表论文200余篇,专利十余项。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21672067)

Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes

Chenghao Zhu1, Junliang Zhang1,**()   

  1. 1. DDepartment of Chemistry, Fudan University, Shanghai 200438, China
  • Received:2020-06-10 Revised:2020-07-04 Online:2020-11-24 Published:2020-09-01
  • Contact: Junliang Zhang
  • Supported by:
    the National Natural Science Foundation of China(21672067)

烯烃的Heck反应经过几十年的发展已日趋成熟,但相应的钯催化有机卤化物与烷基炔的Heck反应生成联烯虽然有着原料简单易得的优点,但发展严重滞后。这一方面是由于活性中间体烯基钯自身难以发生β-H消除,导致其更容易发生质子化反应、碳卤化反应以及串联反应等竞争性反应,另一方面,联烯异构化以及非对称烷基炔的区域选择性问题同样限制了烷基炔Heck反应的研究进展。目前能高效促进烯基钯中间体β-H消除的方法主要有提高反应温度、芳基卤化合物引入取代基和改变配体等。本文主要叙述烷基炔的Heck反应过程中涉及到的烯基钯β-H消除生成联烯以及质子化反应、碳卤化反应和串联反应等竞争性反应,最后总结该反应存在的问题,并对其研究方向进行展望。

As an important unit of molecular structure and organic building blocks, the development of new synthetic methods of allene has received much attention. The Heck and related cascade reaction of alkenes is arguably one of the most synthetically versatile method. However, the Heck reaction of alkyl-alkynes leading to allenes has lagged behind due to the energetically unfavored β-hydride elimination of vinyl palladium species. Several competitive reactions such as protonation, carbohalogenation and cascade reaction exist. Moreover, the isomerization of allene and the regioselectivity of unsymmetrical alkyl-alkynes also limited this research progress. To effectively promote β-hydride elimination of vinyl palladium species, several commonly-used strategies are the increasing reaction temperature, introduction of ortho-substituent to aryl halides and the development of ligand. In this mini-review, Heck and related reaction of alkyl-alkynes including β-hydride elimination reactions of vinyl palladium species, protonation reaction, carbohalogenation reaction, and cascade reaction are emphasized. Finally, the major limitation and an outlook this type of reaction are provided.

Contents

1 Introduction

2 Heck-type reaction pathway of alkyl-alkynes

3 Heck reaction of alkyl-alkynes

4 Other competitive reactions

4.1 Carbohalogenation process

4.2 Domino-Heck cyclization process

4.3 Activation process of aryl C-H

5 β-hydride elimination reactions

6 Conclusion and outlook

()
图式1 炔烃的Heck反应路径
Scheme 1 Heck reaction path of alkynes
图式2 首次发现烷基炔的Heck反应[9]
Scheme 2 First discovery of Heck reaction of alkynes[9]
图式3 钯催化芳基溴化物与炔烃的Heck反应[10]
Scheme 3 Palladium-catalyzed Heck reaction of aryl bromides with alkynes[10]
图式4 钯催化分子内芳基氯化物与炔烃的Heck反应[11]
Scheme 4 Palladium-catalyzed intramolecular Heck reaction between aryl chlorides and alkynes[11]
图式5 钯催化芳基溴化物与炔烃的Heck反应[12]
Scheme 5 Palladium-catalyzed Heck reaction of aryl bromides with alkynes[12]
图式6 钯催化芳基三氟甲磺酸酯与炔烃的Heck反应[13]
Scheme 6 Palladium-catalyzed Heck reaction of aryl triflates and alkynes[13]
图式7 钯催化芳基碘化物与1-芳基-1-烷基炔的Heck反应[14]
Scheme 7 Palladium-catalyzed Heck reaction between aryl iodides and 1-aryl-1-alkynes[14]
图式8 钯催化4-碘-2喹诺酮与烷基炔的Heck反应[15]
Scheme 8 Pd-Catalyzed Heck reaction of 4-iodo-2-quinolone and alkyne[15]
图式9 钯催化芳基三氟甲磺酸酯与炔烃的不对称Heck反应[16]
Scheme 9 Palladium-catalyzed enantioselective Heck reaction of aryl triflates and alkynes[16]
图式10 碳卤化反应[17,18,19,20]
Scheme 10 Carbohalogenation reaction[17,18,19,20]
图式11 Domino-Heck环化反应[21,22,23]
Scheme 11 Domino-Heck cyclizations[21,22,23]
图式12 反式碳钯化/Heck反应[24]
Scheme 12 Anti-carbopalladation/Heck reaction[24]
图式13 烯基到芳基钯的迁移[25]
Scheme 13 Vinylic to aryl palladium migration[25]
图式14 钯催化三氟甲磺酸烯醇酯的β-H消除反应[3a,3b,4a]
Scheme 14 Scheme 14 Pd-catalyzed β-Hydride elimination of enol triflates[3a,3b,4a]
[1]
( a) Torborg C, Beller M . Adv. Synth. Catal., 2009, 351: 3027.;( b) Devendar P, Qu R Y, Kang W M, He B, Yang G F. J. Agric. Food Chem., 2018,66:8914.
[2]
( a) Cartney D M, Guiry P J . Chem. Soc. Rev., 2011, 40: 5122.;( b) Beletskaya I P, Cheprakov A V. Chem. Rev., 2000, 100: 3009.;, 2003,103:2945.
[3]
( a) Crouch I T, Neff R K, Frantz D E . J. Am. Chem. Soc., 2013, 135: 4970.;( b) Arba M E, Dibrell S E, Crouch I T, Frantz D E. Org. Lett., 2017, 19: 5446.;, 1996,96:365.
[4]
( a) Crouch I T, Dreier T, Frantz D E . Angew. Chem. Int. Ed., 2011, 50: 6128.;( b) Fu C, Ma S. Org. Lett., 2005, 7: 1605.;, 2009,15:4224.
[5]
( a) Hoffmann-Röder A, Krause N . Angew. Chem. Int. Ed., 2004, 43: 1196.;( b) Rivera-Fuentes M S P, Diederich F. Angew. Chem. Int. Ed., 2012, 51: 2818.;, 2010,8:1905.
[6]
( a) Wei Y, Shi M . Org. Chem. Front., 2017, 4: 1876.;( b) Mascareñas J L, Varela I, López F. Acc. Chem. Res., 2019, 52: 465.; 2014,43:3106.
[7]
( a) Neff R K, Frantz D E . Tetrahedron, 2015, 71: 7.;( b) Alonso J M, Quirós M T, Muñoz M P. Org. Chem. Front., 2016,3:1186.
[8]
( a) Yu S, Ma S. . Chem. Commun., 2011, 47: 5384.;(b) Ma S. Acc. Chem. Res., 2003, 36: 701.;(c) Yu S, Ma S. Angew. Chem. Int. Ed., 2012, 51: 3074.;(d) Ma S. Acc. Chem. Res., 2009, 42: 1679.;(e) Ma S. Chem. Rev., 2005, 105, 7: 2829.;(f) Huang X, Ma S. Acc. Chem. Res., 2019, 52, 5: 1301.;(g) Ye J, Ma S. Acc. Chem. Res.,2014, 47, 4:989.
[9]
Tao W, Silverberg L J, Rheingold A L, Heck R F . Organometallics, 1989,8:2550.
[10]
Pivsa-Art S, Satoh T, Miura M, Nomura M. Chem. Lett ., 1997,26:823.
[11]
Chapman L M, Adams B, Kliman L T, Makriyannis A , Hamblett C L. Tetrahedron Lett., 2010,51:1517.
[12]
Nella N, Parker E, Hitce J, Larini P, Jazzar R , Baudoin O. Chem. Eur. J., 2014,20:13272.
[13]
Neff R K, Frantz D E . Am. Chem. Soc., 2018,140:17428.
[14]
Lv W, Chen Y, Zhao Z, Wen S, Cheng G. Org. Lett ., 2019,21:7795.
[15]
Yamamoto Y, Jiang J , Yasui T. Chem. Eur. J., 2020,26:3749.
[16]
Zhu C, Chu H, Li G, Ma S, Zhang J . Am. Chem. Soc. 2019,141:1924.
[17]
Le C M , Menzies P J C, Petrone D A, Lautens M. Angew. Chem. Int. Ed., 2015,54:254.
[18]
Lee Y H , Morandi B. Angew. Chem. Int. Ed., 2019,58:6444.
[19]
Takahashi T, Kuroda D, Kuwano T, Yoshida Y, Kurahashi T, Matsubara S. . Chem. Commun., 2018,54, 12750.
[20]
Takahashi T, Kurahashi T, Matsubara S. ACS Catal ., 2020,10:3773.
[21]
Tietze L F, Kahle K , Raschke T. Chem. Eur. J., 2002,8:401.
[22]
Schweizer S, Tokan W M, Parsons P J , Meijere A d. Eur.[J]. Org. Chem., 2010,4687.
[23]
Blouin S, Pertschi R, Schoenfelder A, Suffert J , Blond G. Adv. Synth. Catal., 2018,360:2166.
[24]
( a) Pawliczek M, Schneider T F, Maaß C, Stalke D, Werz D B . Angew. Chem. Int. Ed., 2015, 54: 4119.;( b) Pawliczek M, Milde B, Jones P G, Werz D B. Chem. Eur. J., 2015, 21: 12303.;, 2015,6278.
[25]
Zhao J, Larock R C . Org. Chem., 2006,71:5340.
[1] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[2] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[3] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[4] 宫晓蕾, 高文超, 常宏宏, 魏文珑*, 李兴*. 联烯化合物环加成反应的最新研究[J]. 化学进展, 2017, 29(11): 1331-1350.
[5] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[6] 江玉波, 刘耀文, 张文生, 成会玲, 匡春香, 陈阵. 1,3-二炔的合成[J]. 化学进展, 2016, 28(4): 507-527.
[7] 张文生, 李伟, 匡春香. 1,1-二溴-2-取代苯基乙烯在环化反应中的应用[J]. 化学进展, 2013, 25(07): 1149-1157.
[8] 翁建全, 余志勤, 张国富. 非官能化芳烃与烯烃的直接氧化偶联反应[J]. 化学进展, 2012, 24(04): 523-544.
[9] 史荣会,刘,晔,刘,蒲,王向宇. 环钯化合物在Heck反应中的应用研究[J]. 化学进展, 2007, 19(0203): 283-291.
[10] 程荣,王建龙,张伟贤. 纳米金属铁降解有机卤化物的研究进展*[J]. 化学进展, 2006, 18(01): 93-99.
[11] 姚小泉,陈惠麟,郑卓. 烯烃不对称催化环丙烷化反应进展评述[J]. 化学进展, 2000, 12(03): 282-.