English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1656-1666 DOI: 10.7536/PC130137 前一篇   后一篇

• 综述与评论 •

过渡金属配合物功能化离子液体的合成及其在均相催化中的应用

尤洪星, 王永勇, 王雪珠, 刘晔   

  1. 上海市绿色化学与化工过程绿色化重点实验室 华东师范大学化学系 上海200062
  • 收稿日期:2013-01-01 修回日期:2013-06-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 刘晔 E-mail:yliu@chem.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项(No.21273077,21076083)资助

Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids

You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
  • Received:2013-01-01 Revised:2013-06-01 Online:2013-11-12 Published:2013-07-18

基于离子液体的功能化研究发展而来的配体功能化离子液体和过渡金属配合物功能化离子液体,也可以狭义地称为离子型配体和离子型过渡金属配合物,因为这类功能化离子液体在室温至100 ℃温度范围内呈现固体状态,并非严格定义的离子液体。这类配体功能化离子液体和过渡金属配合物功能化离子液体因其具有与母体室温离子液体在组成和离子型结构的相似性,所以能够被稳固地锁定在母体室温离子液体相中,成为新兴的“固载”均相催化剂(配体或过渡金属配合物)的重要手段之一——不但避免了均相催化剂的流失,提高催化剂的稳定性,并能有效解决均相催化剂的分离和回收使用问题。本文详细综述了近十年来配体功能化离子液体和过渡金属配合物功能化离子液体的合成工作,并介绍了其在均相催化中的应用。

The ligand- and transition metal complex-functionalized ionic liquids (FILs) can be defined narrowly as the ionic ligands and ionic transition metal complexes since they are not strictly room temperature ionic liquids (RTILs) any more in the range of RT to 100 ℃. Such kinds of ligand- and transition metal complex-FILs have attracted more and more attention due to their promising applications in homogeneous catalysis as one of alternative methods to heterogenize the homogenous catalysts into the RTILs phase. Due to similarity in the composition and the ionic structure to the parent RTILs (as a solvent), the ligand- and transition metal complex-FILs as catalysts have the following advantages. The catalysts are stable, and their leaching can be avoided, which make the separation workup simple. In addition, the recyclability of the catalysts is available. This review summarizes the progress in the syntheses of ligand- and transition metal complex-FILs and their applications in homogeneous catalysis, developed in the past decade.

Contents
1 Introduction
2 Syntheses and catalytic applications of the transition metal complex-functionalized ionic liquids (FILs)
2.1 Transition metal complex-FILs coordinated by the ligands remote to positive-charged quaternary ammonium/phosphonium of ILs
2.2 Transition metal complex-FILs coordinated by the ligands vicinal to positive-charged quaternary ammonium/phosphonium of ILs
3 Conclusions and outlook

中图分类号: 

()
[1] Davis J H Jr, Fox P A. Chem. Commun., 2003, (11): 1209—1211
[2] Wilkes J S. Green Chem., 2002, 4(2): 73—80
[3] Hallett J P, Welton T. Chem. Rev., 2011, 111(5): 3508—3576
[4] Lee S G. Chem. Commun., 2006, (10): 1049—1063
[5] 刘鹰(Liu Y). 离子液体在催化过程中的应用(Application of Ionic Liquids in the Catalytic Process). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 150—177
[6] 王军(Wang J). 离子液体的性能及应用(The Performance and Application of Ionic Liquids). 北京: 中国纺织出版社(Beijing: China Textile & Apparel Press), 2007. 186—219
[7] Tang S, Baker G A, Zhao H. Chem. Soc. Rev., 2012, 41(10): 4030—4066
[8] 李雪辉(Li X H), 赵东滨(Zhao D B), 费兆福(Fei Z F). 中国科学B辑: 化学(Science in China Series B: Chemistry), 2006, 36 (3): 181—196
[9] Liu Y, Wang S, Liu W, Wan Q, Wu H, Gao G. Curr. Org. Chem., 2009, 13(13): 1322—1346
[10] Luo S, Zhang L, Cheng L. Chem. Asian J., 2009, 4(8), 1184—1195
[11] Wiebus E, Cornils B. Catalysis by Metal Complexes Catalysis by Metal Complexes: Catalyst Separation, Recovery and Recycling (Vol. 30). Netherlands: Springer, 2006
[12] Brunet J, Chauvin R, Commenges G, Donnadieu B, Leglaye P. Organometallics, 1996, 15(7): 1752—1754
[13] Leglaye P, Donnadieu B, Brunet J, Chauvin R. Tetrahedron Lett., 1998, 39(50): 9179—9182
[14] Gurtler C, Jautelat M. European Patent, EP 1035093
[15] Buijsman R C, van Vuuren E, Sterrenburg J G. Org. Lett., 2001, 3(23): 3785—3787
[16] Audic N, Clavier H, Mauduit M, Guillemin J C. J. Am. Chem. Soc., 2003, 125(31): 9248—9249
[17] Clavier H, Audic N, Guillemin J C, Mauduit M. J. Organomet. Chem., 2005, 690(15): 3585—3599
[18] Yao Q, Zhang Z. Angew. Chem. Int. Ed., 2003, 42(29): 3395—3398
[19] Yao Q, Sheets M. J. Organomet. Chem., 2005(15): 3577—3584
[20] Baleizao C, Gigante, Garciab B H. Tetrahedron Lett., 2003, 44(36): 6813—6816
[21] Xiao J C, Shreeve J M. J. Org. Chem., 2005, 70(8): 3072—3078
[22] Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. J. Am. Chem. Soc., 2004, 126(48): 15876—15882
[23] Corma A, Garcia H, Leyva A. Terahedron, 2004, 60(38): 8553—8560
[24] Wang R, Melissa M P, Shreeve J M. Org. Biomol. Chem., 2006, 4(10): 1878—1886
[25] Xiao J, Twamley B, Shreeve J M. Organic Letters, 2004, 6(21): 3845—3847
[26] Wang R H, Xiao J C, Twamley B, Shreeve J M. Org. Biomol. Chem., 2007, 5(4): 671—678
[27] Lee S, Zhang Y J, Piao J Y, Yoon H, Song C E, Choi J H, Hong J. Chem. Commun., 2003, (20): 2624—2625
[28] Peng Y Q, Cai Y Q, Song G H, Chen J. Synlett, 2005, (14): 2147—2150
[29] Xu L, Chen W, Xiao J. Organometallics, 2000, 19(6): 1123—1127
[30] Field L D, Messerle B A, Vuong K Q, Turner P. Organometallics, 2005, 24(17): 4241—4250
[31] Hahn F E, Jahnke M C, Gomez-Benitez V, Morales-Morales D, Pape T. Organometallics, 2005, 24(26): 6458—6463
[32] Pozo C D, Iglesias M, Sanchez F. Organometallics, 2011, 30(8): 2180—2188
[33] Topf C, Hirtenlehner C, Monkowius U. J. Organomet. Chem., 2011, 696(20): 3274—3278
[34] Mas-Marzá E, Poyatos M, Sanau M, Peris E. Inorg. Chem., 2004, 43(6): 2213—2219
[35] Brauer D J, Kottsieper K W, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem., 2001, 630(2): 177—184
[36] Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I. Eur. J. Inorg. Chem., 2007, (31): 4877—4883
[37] Zhang J, D aković M, Popović Z, Wu H, Liu Y. Catal. Commun., 2012, 17: 160—163
[38] Zhou C L, Zhang J, D aković M, Popović Z, Zhao X L, Liu Y. Eur. J. Inorg. Chem., 2012, (21): 3435—3440
[39] Wang S S, Zhang J, Zhou C L, Vo-Thanh G, Liu Y. Catal. Commun., 2012, 28: 152—154
[40] Ruiz J, Mesa A F. Chem. Eur. J., 2012, 18(15): 4485—4488
[41] Debono N, Canac Y, Duhayon C, Chauvin R. Eur. J. Inorg. Chem., 2008, (19): 2991—2999
[42] Abdellah I, Boggio-Pasqua M, Canac Y, Lepetit C, Duhayon C, Chauvin R. Chem. Eur. J., 2011, 17(18): 5110—5115
[43] (a) Canac Y, Debono N, Vendier L, Chauvin R. Inorg. Chem., 2009, 48(12): 5562—5568; (b) Canac Y, Debono N, Lepetit C, Duhayon C, Chauvin R. Inorg. Chem., 2011, 50(21): 10810—10819
[44] Viau L, Lepetit C, Commenges G, Chauvin R. Organometallics, 2001, 20(5): 808—810
[45] (a) Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R. Organometallics, 2003, 22(23): 4810—4817 ; (b) Zurawinski R, Lepetit C, Canac Y, Mikolajczyk M, Chauvin R. Inorg. Chem., 2009, 48(5): 2147—2155
[46] Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R. J. Organomet. Chem., 2004, 689(2): 380—386
[47] Canac Y, Duhayon C, Chauvin R. Angew. Chem. Int. Ed., 2007, 46(33): 6313—6315
[48] Canac Y, Lepetit C, Abdalilah M, Canac Y, Chauvin R. J. Am. Chem. Soc., 2008, 130(26): 8406—8413
[49] Meguro H, Koizumi T, Yamamoto T, Kanbara T. J. Organomet. Chem., 2008, 693(6): 1109—1116
[50] Durben S, Baumgartner T. Inorg. Chem., 2011, 50(14): 6823—6836
[51] Zhang G J, Gan X, Xu Q Q, Chen Y, Zhao X J, Qin B, Lv X J, Lai S W, Fu W F, Che C M. Dalton Trans., 2012, 41(27): 8421—8429
[52] Wan Q X, Liu Y. Catal. Lett., 2009, 128(3/4): 487—492
[53] Zhang H J, Liu Y, Li X S, Wang X, Ding X. J. Mol. Catal. A: Chem., 2008, 287(1/2): 80—86
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[3] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[4] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[5] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[8] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[9] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[10] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[11] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[12] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[13] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[14] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[15] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.