English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 417-425 DOI: 10.7536/PC200603 前一篇   后一篇

• 综述 •

基于纳米碳填料可拉伸导电聚合物复合材料的制备

张天永1, 吴畏1,2, 朱剑2, 李彬1,*(), 姜爽1,*()   

  1. 1 天津大学化工学院 天津 300072
    2 南开大学材料科学与工程学院 国家新材料研究院 天津 300350
  • 收稿日期:2020-06-01 修回日期:2020-07-07 出版日期:2021-03-20 发布日期:2020-11-30
  • 通讯作者: 李彬, 姜爽
  • 作者简介:
    * Corresponding author e-mail: (Bin Li); (Shuang Jiang)
  • 基金资助:
    国家自然科学基金项目(21908161)

Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers

Tianyong Zhang1, Wei Wu1,2, Jian Zhu2, Bin Li1,*(), Shuang Jiang1,*()   

  1. 1 School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
    2 School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University,Tianjin 300350, China
  • Received:2020-06-01 Revised:2020-07-07 Online:2021-03-20 Published:2020-11-30
  • Contact: Bin Li, Shuang Jiang
  • Supported by:
    the National Natural Science Foundation of China(21908161)

碳系材料具有导电性强、稳定性好、价格低廉等优点,被广泛用于制备可拉伸导电复合材料,并且在可拉伸、可穿戴电子设备等领域有巨大的应用潜力,引起了研究者的密切关注。本文介绍了碳系材料的种类,主要有炭黑、碳纳米管和石墨烯等;总结了3种纳米复合材料的主要制备工艺:原位聚合法、熔融共混法和溶液混合法,并介绍了传统印刷技术和新型打印技术。分析了复合材料的导电机理,介绍了渗流阈值理论;并重点探讨了其在可拉伸传感器和可拉伸能量储存设备领域的应用。针对基于纳米碳填料制备的可拉伸导电聚合物复合材料指出目前研究的不足之处:导电填料分散性差、导电网络不稳定和无法大规模生产等,并提出了多种解决方案。对基于纳米碳填料制备的可拉伸导电聚合物复合材料在微型化、可拉伸、可穿戴电子设备领域的应用前景作出了展望。

Carbon-based materials have excellent conductivity, good stability, and low price. They are widely used in the preparation of stretchable conductive nanocomposites, and have tremendous application potential in the field of stretchable and wearable electronic devices, which has attracted lots of attention. This paper introduces the carbon-based materials, such as carbon black, carbon nanotubes and graphene. The preparation methods of these nanocomposites are also summarized, such as in-situ polymerization, melt blending and solution mixing, followed by the introduction of traditional and new printing technology. Then this paper analyzes the conductive mechanisms of composite materials including the percolation threshold, and focuses on their application in the field of stretchable sensors and stretchable energy storage devices. The shortcomings of the current research on stretchable conductive composites based on nano-carbon fillers are pointed out: poor dispersion of conductive fillers, unstable conductive network and inability to mass-produce, and the corresponding solutions are put forward. Finally, the applications of stretchable conductive composites based on nano-carbon fillers are prospected, including miniaturized, stretchable and wearable electronic devices.

Contents

1 Introduction

2 Conductive composites based on nano?carbon fillers

2.1 Carbon black

2.2 Carbon nanotube

2.3 Graphene

3 Preparation of stretchable conductive composites

3.1 Polymer

3.2 Preparation of conductive ink

3.3 Printing technology

4 Conduction mechanism of stretchable conductive composites based on nano?carbon fillers

5 Application

5.1 Stretchable sensors

5.2 Stretchable energy storage device

6 Conclusion

()
图1 碳系导电填料
Fig.1 Carbon-based conductive filler
图2 炭黑导电纳米复合材料拉伸导电性能图
Fig.2 Conductivity of carbon black conductive nanocomposite material as a function of stretchability
图3 碳纳米管导电纳米复合材料拉伸导电性能图
Fig.3 Conductivity of CNT conductive nanocomposite material as a function of stretchability
图4 石墨烯导电纳米复合材料拉伸导电性能图
Fig.4 Conductivity of graphene conductive nanocomposite material as a function of stretchability
图5 可拉伸导电复合材料制备方法示意图
Fig.5 Schematic representation of preparation methods of stretchable conductive composites
图6 各种印刷技术示意图,(a)刮涂,(b)网版印刷,(c)喷涂,(d)柔版印刷,(e)丝网印刷,(f)喷墨印刷,(g)3D印刷[36]
Fig.6 Schematic diagram of printing technology,(a) blade coating,(b) screen printing,(c) spray,(d) flexography printing,(e) silk screen printing,(f) inkjet printing,(g) 3D printing[36]
图7 导电纳米复合材料渗流理论示意图[39]
Fig.7 Schematic diagram of percolation theory[39]
表1 基于纳米碳填料制备的可拉伸导电聚合物复合材料在传感器中的应用
Table 1 Application of carbon-based stretchable conductive nanocomposites in sensors
表2 基于纳米碳填料制备的可拉伸导电复合材料在能量储存设备中的应用
Table 2 Application of carbon-based stretchable conductive nanocomposites in energy storage
图8 多种导电纳米复合材料的性能及应用[18,20,25](a)可拉伸有源矩阵显示器,(b) 可拉伸导体,(c) 可拉伸发光显示器
Fig.8 Properties and applications of conductive nanocomposites[18,20,25](a) stretchable active matrix display,(b) stretchable conductor,(c) stretchable light-emitting display
[1]
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9):1801072.
[2]
Wang Z Y, Gao W L, Zhang Q, Zheng K Q, Xu J W, Xu W, Shang E W, Jiang J, Zhang J, Liu Y. ACS Appl. Mater. Interfaces, 2019, 11(1):1344.
[3]
Lu N S, Lu C, Yang S X, Rogers J. Adv. Funct. Mater., 2012, 22(19):4044.
[4]
Wang B, Lee B K, Kwak M J, Lee D W. Rev. Sci. Instruments, 2013, 84(10):105005.
[5]
Feng Y, Zhu J. Sci. China Mater., 2019, 62(11):1679.
[6]
Song W J, Park J, Kim D H, Bae S, Kwak M J, Shin M, Kim S, Choi S, Jang J H, Shin T J, Kim S Y, Seo K, Park S. Adv. Energy Mater., 2018, 8(10):1702478.
[7]
Gu M S, Song W J, Hong J, Kim S Y, Shin T J, Kotov N A, Park S, Kim B S. Sci. Adv., 2019, 5:eaaw1879.
[8]
Kettlgruber G, Kaltenbrunner M, Siket C M, Moser R, Graz I M, Schwödiauer R, Bauer S. J. Mater. Chem. A, 2013, 1(18):5505.
[9]
Xu P, Wei B Q, Cao Z Y, Zheng J, Gong K, Li F X, Yu J Y, Li Q W, Lu W B, Byun J H, Kim B S, Yan Y S, Chou T W. ACS Nano, 2015, 9(6):6088.
[10]
Zhang N, Zhou W Y, Zhang Q, Luan P S, Cai L, Yang F, Zhang X, Fan Q X, Zhou W B, Xiao Z J, Gu X G, Chen H L, Li K W, Xiao S Q, Wang Y C, Liu H P, Xie S S. Nanoscale, 2015, 7(29):12492.
[11]
Zang J F, Cao C Y, Feng Y Y, Liu J, Zhao X H. Sci. Rep., 2014, 4:6492.
[12]
Chen Z B, Xi J T, Huang W, Yuen M M F. Sci. Rep., 2017, 7:10958.
[13]
Silva T A, Moraes F C, Janegitz B C, Fatibello-Filho O. J. Nanomater., 2017, 2017:1.
[14]
Niu X, Peng S, Liu L, Wen W, Sheng P. Adv. Mater., 2007, 19(18):2682.
[15]
Bhagavatheswaran E S, Parsekar M, Das A, Le H H, Wiessner S, Stöckelhuber K W, Schmaucks G, Heinrich G. J. Phys. Chem. C, 2015, 119(37):21723.
[16]
Mubarak N M, Abdullah E C, Jayakumar N S, Sahu J N. J. Ind. Eng. Chem., 2014, 20(4):1186.
[17]
Ying L S, bin Mohd Salleh M A, b Mohamed Yusoff H, Abdul Rashid S B, b Abd Razak J. J. Ind. Eng. Chem., 2011, 17(3):367.
[18]
Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K J, Someya T. Nat. Mater., 2009, 8(6):494.
[19]
Shin M K, Oh J, Lima M, Kozlov M E, Kim S J, Baughman R H. Adv. Mater., 2010, 22(24):2663.
[20]
Liu Z J, Qian Z H, Song J N, Zhang Y. Carbon, 2019, 149:181.
[21]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Phys. Rev. Lett., 2008, 100:016602.
[22]
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146(9/10):351.
[23]
Gao N, Fang X S. Chem. Rev., 2015, 115(16):8294.
[24]
Wang X L, Shi G Q. Energy Environ. Sci., 2015, 8(3):790.
[25]
Wang Z Y, Liu X, Shen X, Han N M, Wu Y, Zheng Q B, Jia J J, Wang N, Kim J K. Adv. Funct. Mater., 2018, 28(19):1707043.
[26]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6):424.
[27]
Sun F Q, Tian M W, Sun X T, Xu T L, Liu X Q, Zhu S F, Zhang X J, Qu L J. Nano Lett., 2019, 19(9):6592.
[28]
Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho H J, Algadi H, Al-Sayari S, Kim D E, Lee T. Adv. Funct. Mater., 2015, 25(21):3114.
[29]
Liang J J, Li L, Tong K, Ren Z, Hu W, Niu X F, Chen Y S, Pei Q B. ACS Nano, 2014, 8(2):1590.
[30]
Wang Z X, Volinsky A A, Gallant N D. J. Appl. Polym. Sci., 2014, 131(22):42050.
[31]
Choi S, Park J, Hyun W, Kim J, Kim J, Lee Y B, Song C, Hwang H J, Kim J H, Hyeon T, Kim D H. ACS Nano, 2015, 9(6):6626.
[32]
Hu H T, Wang X B, Wang J C, Wan L, Liu F M, Zheng H, Chen R, Xu C H. Chem. Phys. Lett., 2010, 484(4/6):247.
[33]
Duan L Y, Fu S R, Deng H, Zhang Q, Wang K, Chen F, Fu Q. J. Mater. Chem. A, 2014, 2(40):17085.
[34]
Uyor U O, Popoola A P, Popoola O, Aigbodion V S. Adv. Polym. Technol., 2018, 37(8):2838.
[35]
Hwang Y G, Lee S C, Jeong Y G. Fibers Polym., 2014, 15(5):1010.
[36]
Gaikwad A M, Arias A C, Steingart D A. Energy Technol., 2015, 3(4):305.
[37]
Xu Z B, Li Y, Sang L, Ding F, Liu X J. Power Sources, 2018, 42:157.
徐志彬, 李杨, 桑林, 丁飞, 刘兴江. 电源技术, 2018, 42:157.
[38]
Jason N N, Ho M D, Cheng W L. J. Mater. Chem. C, 2017, 5(24):5845.
[39]
Taherian R. ECS J. Solid State Sci. Technol., 2014, 3(6):M26.
[40]
Kirkpatrick S. Rev. Mod. Phys., 1973, 45(4):574.
[41]
Gao J F, Li Z M, Meng Q J, Yang Q. Mater. Lett., 2008, 62(20):3530.
[42]
Liu Y B, Lan T B, Zhang W F, Ding X K, Wei M D. J. Mater. Chem. A, 2014, 2(47):20133.
[43]
Sridharan K, Park T J. Appl. Catal. B: Environ., 2013, 134/135:174.
[44]
Wang W, Guo Y F, Sun Z F. Chem. Ind. Eng. Prog., 2015, 34(12):4259.
( 王望, 郭彦峰, 孙振锋. 化工进展, 2015,34(12):4259).
[45]
Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein H Y Y, Takei K, Javey A. Adv. Mater., 2016, 28(22):4397.
[46]
Jang H, Park Y J, Chen X, Das T, Kim M S, Ahn J H. Adv. Mater., 2016, 28(22):4184.
[47]
Boland C S, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira M S, Mobius M E, Young R J, Coleman J N. Science, 2016, 354(6317):1257.
[48]
Pan F, Chen S M, Li Y H, Tao Z C, Ye J L, Ni K, Yu H, Xiang B, Ren Y B, Qin F X, Yu S H, Zhu Y W. Adv. Funct. Mater., 2018, 28(40):1803221.
[49]
Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(12):12020.
[50]
Kong J H, Jang N S, Kim S H, Kim J M. Carbon, 2014, 77:199.
[51]
Yokota T, Inoue Y, Terakawa Y, Reeder J, Kaltenbrunner M, Ware T, Yang K J, Mabuchi K, Murakawa T, Sekino M, Voit W, Sekitani T, Someya T. PNAS, 2015, 112(47):14533.
[52]
Yue R R, Wang H C, Liu X P, Yang J B, Wang Z W. Mater. Rep., 2019, 33:3580.
岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 材料导报, 2019, 33:3580.
[53]
Hu L B, Pasta M, La Mantia F, Cui L F, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y. Nano Lett., 2010, 10(2):708.
[54]
Fan Y J, Meng X S, Li H Y, Kuang S Y, Zhang L, Wu Y, Wang Z L, Zhu G. Adv. Mater., 2017, 29(2):1603115.
[55]
Li H S, Ding Y, Ha H, Shi Y, Peng L L, Zhang X G, Ellison C J, Yu G H. Adv. Mater., 2017, 29(23):1700898.
[56]
Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv. Mater., 2018, 30(18):1800124.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[8] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[9] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[10] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[13] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[14] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[15] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.